1
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Figueiredo J, Mendes M, Pais A, Sousa J, Vitorino C. Microfluidics-on-a-chip for designing celecoxib-based amorphous solid dispersions: when the process shapes the product. Drug Deliv Transl Res 2024:10.1007/s13346-024-01633-7. [PMID: 38861140 DOI: 10.1007/s13346-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
The fundamental idea underlying the use of amorphous solid dispersions (ASDs) is to make the most of the solubility advantage of the amorphous form of a drug. However, the drug stability becomes compromised due to the higher free energy and disorder of molecular packing in the amorphous phase, leading to crystallization. Polymers are used as a matrix to form a stable homogeneous amorphous system to overcome the stability concern. The present work aims to design ASD-based formulations under the umbrella of quality by design principles for improving oral drug bioavailability, using celecoxib (CXB) as a model drug. ASDs were prepared from selected polymers and tested both individually and in combinations, using various manufacturing techniques: high-shear homogenization, high-pressure homogenization, microfluidics-on-a-chip, and spray drying. The resulting dispersions were further optimized, resorting to a 32 full-factorial design, considering the drug:polymers ratio and the total solid content as variables. The formulated products were evaluated regarding analytical centrifugation and the influence of the different polymers on the intrinsic dissolution rate of the CXB-ASDs. Microfluidics-on-a-chip led to the amorphous status of the formulation. The in vitro evaluation demonstrated a remarkable 26-fold enhancement in the intrinsic dissolution rate, and the translation of this formulation into tablets as the final dosage form is consistent with the observed performance enhancement. These findings are supported by ex vivo assays, which exhibited a two-fold increase in permeability compared to pure CXB. This study tackles the bioavailability hurdles encountered with diverse active compounds, offering insights into the development of more effective drug delivery platforms.
Collapse
Affiliation(s)
- Joana Figueiredo
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
3
|
Camacho Vieira C, Peltonen L, Karttunen AP, Ribeiro AJ. Is it advantageous to use quality by design (QbD) to develop nanoparticle-based dosage forms for parenteral drug administration? Int J Pharm 2024; 657:124163. [PMID: 38670473 DOI: 10.1016/j.ijpharm.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Parenteral administration is one of the most commonly used drug delivery routes for nanoparticle-based dosage forms, such as lipid-based and polymeric nanoparticles. For the treatment of various diseases, parenteral administration include intravenous, subcutaneous, and intramuscular route. In drug development phase, multiparameter strategy with a focus on drug physicochemical properties and the specificity of the administration route is required. Nanoparticle properties in terms of size and targeted delivery, among others, are able to surpass many drawbacks of conventional dosage forms, but these unique properties can be a bottleneck for approval by regulatory authorities. Quality by Design (QbD) approach has been widely utilized in development of parenteral nanoparticle-based dosage forms. It fosters knowledge of product and process quality by involving sound scientific data and risk assessment strategies. A full and comprehensive investigation into the state of implementation and applications of the QbD approach in these complex drug products can highlight the gaps and challenges. In this review, the analysis of critical attributes and Design of Experiment (DoE) approach in different nanoparticulate systems, together with the proper utilization of Process Analytical Technology (PAT) applications are described. The essential of QbD approach for the design and development of nanoparticle-based dosage forms for delivery via parenteral routes is discussed thoroughly.
Collapse
Affiliation(s)
- C Camacho Vieira
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal
| | - L Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A P Karttunen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
Nasser N, Hathout RM, Abd-Allah H, Sammour OA. Simplex Lattice Design and Machine Learning Methods for the Optimization of Novel Microemulsion Systems to Enhance p-Coumaric Acid Oral Bioavailability: In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:56. [PMID: 38448576 DOI: 10.1208/s12249-024-02766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Novel p-coumaric acid microemulsion systems were developed to circumvent its absorption and bioavailability challenges. Simplex-lattice mixture design and machine learning methods were employed for optimization. Two optimized formulations were characterized using in vitro re-dispersibility and cytotoxicity on various tumor cell lines (MCF-7, CaCO2, and HepG2). The in vivo bioavailability profiles of the drug loaded in the two microemulsion systems and in the suspension form were compared. The optimized microemulsions composed of Labrafil M1944 CS (5.67%)/Tween 80 (38.71%)/Labrasol (38.71%)/water (16.92%) and Capryol 90 (0.50%)/Transcutol P (26.67%)/Tween 80 (26.67%)/Labrasol (26.67%)/water (19.50%), respectively. They revealed uniform and stable p-coumaric acid-loaded microemulsion systems with a droplet size diameter of about 10 nm. The loaded microemulsion formulations enhanced the drug re-dispersibility in contrast to the drug suspension which exhibited 5 min lag time. The loaded formulae were significantly more cytotoxic on all cell lines by 11.98-16.56 folds on MCF-7 and CaCo2 cells and 47.82-98.79 folds on HepG2 cells higher than the pure drug. The optimized microemulsions were 1.5-1.8 times more bioavailable than the drug suspension. The developed p-coumaric acid microemulsion systems could be considered a successful remedy for diverse types of cancer.
Collapse
Affiliation(s)
- Nayera Nasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt.
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| |
Collapse
|
5
|
Mendes M, Branco F, Vitorino R, Sousa J, Pais A, Vitorino C. A two-pronged approach against glioblastoma: drug repurposing and nanoformulation design for in situ-controlled release. Drug Deliv Transl Res 2023; 13:3169-3191. [PMID: 37574500 PMCID: PMC10624718 DOI: 10.1007/s13346-023-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GB) is one of the most lethal types of neoplasms. Its biologically aggressive nature and the presence of the blood-brain barrier (BBB) limit the efficacy of standard therapies. Several strategies are currently being developed to both overcome the BBB and deliver drugs site specifically to tumor cells. This work hypothesizes a two-pronged approach to tackle GB: drug repurposing with celecoxib (CXB) and a nanoformulation using ultra-small nanostructured lipid carriers (usNLCs). CXB antitumor druggable activity was inspected bioinformatically and screened in four glioma cell lines aiming at the comparison with temozolomide (TMZ), as standard of care. Delving into formulation design, it was tailored aiming at (i) improving the drug solubility/loading properties, (ii) assigning a thermal-triggerable drug release based on a lipid matrix with a low melting point, and (iii) enhancing the cytotoxic effect by selecting a template targetable to tumor cells. For this purpose, an integrated analysis of the critical material attributes (CMAs), critical process parameters (CPPs), and critical quality attributes (CQAs) was conducted under the umbrella of a quality by design approach. CMAs that demonstrate a high-risk level for the final quality and performance of the usNLCs include the drug solubility in lipids (solid and liquid), the lipid composition (envisioning a thermoresponsive approach), the ratio between lipids (solid vs. liquid), and the surfactant type and concentration. Particle size was shown to be governed by the interaction lipid-surfactant followed by surfactant type. The drug encapsulation did not influence colloidal characteristics, making it a promising carrier for lipophilic drugs. In general, usNLCs exhibited a controlled drug release during the 72 h at 37 °C with a final release of ca. 25%, while at 45 °C this was doubled. The in vitro cellular performance depended on the surfactant type and lipid composition, with the formulations containing a sole solid lipid (Suppocire® NB) and Kolliphor® RH40 as surfactant being the most cytotoxic. usNLCs with an average diameter of ca. 70 nm and a narrow size distribution (PdI lower than 0.2) were yielded, exhibiting high stability, drug protection, sustained and thermo-sensitive release properties, and high cytotoxicity to glioma cells, meeting the suitable CQAs for parenteral administration. This formulation may pave the way to a multi-addressable purpose to improve GB treatment.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Rui Vitorino
- iBiMED-Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, UnIC, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
6
|
Khan S, Sharma A, Jain V. An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes. Adv Pharm Bull 2023; 13:446-460. [PMID: 37646052 PMCID: PMC10460807 DOI: 10.34172/apb.2023.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/24/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Nanostructured Lipid Carriers (NLC) are nano-sized colloidal drug delivery system that contains a lipid mixture consisting of both solid and liquid lipids in their core. This Lipid-Based Nanosystem is introduced as a biocompatible, non-toxic, and safe nano-drug delivery system as compared to polymeric or metallic nanoparticles. Due to its safety, stability, and high drug loading capacity compared to other lipid-based nanocarriers, NLC gained the attention of researchers to formulate safe and effective drug carriers. The ability to increase drug solubility and permeability while encapsulating the drug in a lipidic shell makes them an ideal carrier for drug delivery through difficult-to-achieve routes. Surface modification of NLC and the use of various additives result in drug targeting and increased residence time. With such qualities, NLCs can be used to treat a variety of diseases such as cancer, infections, neurodegenerative diseases, hypertension, diabetes, and pain management. This review focuses on the recent developments being made to deliver the drugs and genes through different routes via these nanocarriers. Here, we also discuss about historical background, structure, types of NLC and commonly employed techniques for manufacturing lipid-based nanocarriers.
Collapse
Affiliation(s)
- Shadab Khan
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | | | - Vikas Jain
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| |
Collapse
|
7
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang C, Wang J, Han X, Liu J, Ma M, Tian S, Zhang L, Tang J. Ultra-small lipid carriers with adjustable release profiles for synergistic treatment of drug-resistant ovarian cancer. NANOTECHNOLOGY 2022; 33:355102. [PMID: 34325420 DOI: 10.1088/1361-6528/ac18d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Multidrug resistance has dramatically compromised the effectiveness of paclitaxel (PTX). The combined application of PTX and tetrandrine (TET) is a promising avenue in drug-resistant cancer therapy. However, poor drug release and limited intracellular drug accumulation greatly impede this combinational antitumor therapy. To address this problem, we successfully developed a tunable controlled release lipid platform (PT@usNLC) for coordinated drug delivery. The drug release rate of PT@usNLC can be tuned by varying the lipid ratio, which has potential to maximize the therapeutic effects of combined drugs. The TET release rate from PT@usNLC was faster than PTX, which could restore the sensitivity of tumor cells to PTX and exert a synergistic antitumor effect. The appropriate size of PT@usNLC could effectively increase the intracellular drug accumulation. Bothin vitroandin vivostudies revealed that PT@usNLC significantly enhanced the therapeutic effect compared to conventional therapies. This study provides a new strategy for resistant ovarian cancer therapy.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Xinyu Han
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Mengchao Ma
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Siyu Tian
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| |
Collapse
|
9
|
A Stepwise Framework for the Systematic Development of Lipid Nanoparticles. Biomolecules 2022; 12:biom12020223. [PMID: 35204723 PMCID: PMC8961617 DOI: 10.3390/biom12020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
A properly designed nanosystem aims to deliver an optimized concentration of the active pharmaceutical ingredient (API) at the site of action, resulting in a therapeutic response with reduced adverse effects. Due to the vast availability of lipids and surfactants, producing stable lipid dispersions is a double-edged sword: on the one hand, the versatility of composition allows for a refined design and tuning of properties; on the other hand, the complexity of the materials and their physical interactions often result in laborious and time-consuming pre-formulation studies. However, how can they be tailored, and which premises are required for a “right at first time” development? Here, a stepwise framework encompassing the sequential stages of nanoparticle production for disulfiram delivery is presented. Drug in lipid solubility analysis leads to the selection of the most suitable liquid lipids. As for the solid lipid, drug partitioning studies point out the lipids with increased capacity for solubilizing and entrapping disulfiram. The microscopical evaluation of the physical compatibility between liquid and solid lipids further indicates the most promising core compositions. The impact of the outer surfactant layer on the colloidal properties of the nanosystems is evaluated recurring to machine learning algorithms, in particular, hierarchical clustering, principal component analysis, and partial least squares regression. Overall, this work represents a comprehensive systematic approach to nanoparticle formulation studies that serves as a basis for selecting the most suitable excipients that comprise solid lipid nanoparticles and nanostructured lipid carriers.
Collapse
|
10
|
Abd-Elsalam WH, Nagy YI, Abouelatta SM. Tailoring thixotropic mixed-lipid nanoconstructs of voriconazole for the management of Vulvovaginal candidiasis: Formulation, statistical optimization, in vitro characterization and in vivo assessment. Drug Deliv 2021; 28:1877-1889. [PMID: 34519230 PMCID: PMC8451661 DOI: 10.1080/10717544.2021.1974608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vulvovaginal candidiasis is a pervasive gynecological condition among women worldwide due to infection recurrence and resistance to conventional drugs. This calls for a novel formulation of alternative medication and with enhanced efficacy. This study aimed to fabricate mixed-lipid nanoconstructs (MLNCs) of voriconazole (VCZ) with a low concentration of lipids applying high shear homogenization and ultrasonication to form a semisolid formulation. Tefose 63 and Gelot 64 were employed as emulsifiers that are specified for vaginal preparations; as per their mucoadhesive properties and their texture enhancing characters, although usually used as lipids in different lipid carriers. A 24 factorial design was established and the optimized formulation was prepared using 10% total lipids, in which solid lipids (Sterotex NF: Glyceryl monostearate) ratio was 1.92:1 and the oils percentage was 30% (Maisine: Glyceryl monooleate, in the ratio of 1:1), and the emulsifiers mixture (Tefose 63: Gelot 64) ratio was 1:1, as 10% of total formulation weight. The optimized formulation with a viscosity of 964.49 ± 57.99 cp showed spherical nanoparticles (322.72 ± 15.11 nm) that entrapped 67.16 ± 3.45% of VCZ and exhibited release of 70.08 ± 2.87% in 8 h. The optimized formulation with high bioadhesive potentials significantly reduced the fungal burden in female Wistar rats infected with vaginal candidiasis, compared to the aqueous VCZ suspension (p < .05). Furthermore, in vivo histopathological findings proved the effectiveness and the safety of the optimized MLNCs formulation after vaginal application. Inclusively, MLNCs formulation could be a promising vaginal delivery system of VCZ for the treatment of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar M Abouelatta
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
11
|
Expediting Disulfiram Assays through a Systematic Analytical Quality by Design Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An Analytical Quality by Design (AQbD) approach is presented, aiming at the development and validation of an HPLC method for the quantification of disulfiram and copper diethyldithiocarbamate in lipid nanoparticles. Following the definition of the analytical target profile (ATP), encompassing the critical analytical attributes (CAA), a two-level risk assessment strategy (Ishikawa diagram—failure mode and effect analysis (FMEA)) was employed to identify the critical method parameters (CMPs) with an extensive impact on method performance. The behavior of the CMPs (flow rate and mobile phase composition) was further characterized by experimental design, resorting to a face-centered central composite design (FcCCD). Statistical modeling, response surface analysis, and Monte Carlo simulations led to the definition of the Method Operable Design Region (MODR), associated with a negligible risk of failing the predefined CAA specifications. The optimal method was validated according to international regulatory recommendations. Apart from guaranteeing linearity, accuracy, precision, specificity, robustness, and stability, these conditions were found to be suitable for analysis using a different HPLC column and equipment. In a nutshell, the development and optimization strategies, under the comprehensive framework of AQbD, provided an effective, simple, rapid, reliable, and flexible method for routine analysis of the compounds in research or industrial environments.
Collapse
|
12
|
Basso J, Mendes M, Silva J, Cova T, Luque-Michel E, Jorge AF, Grijalvo S, Gonçalves L, Eritja R, Blanco-Prieto MJ, Almeida AJ, Pais A, Vitorino C. Sorting hidden patterns in nanoparticle performance for glioblastoma using machine learning algorithms. Int J Pharm 2021; 592:120095. [PMID: 33220382 DOI: 10.1016/j.ijpharm.2020.120095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Cationic compounds have been described to readily penetrate cell membranes. Assigning positive charge to nanosystems, e.g. lipid nanoparticles, has been identified as a key feature to promote electrostatic binding and design ligand-based constructs for tumour targeting. However, their intrinsic high cytotoxicity has hampered their biomedical application. This paper seeks to establish which cationic compounds and properties are compelling for interface modulation, in order to improve the design of tumour targeted nanoparticles against glioblastoma. How can intrinsic features (e.g. nature, structure, conformation) shape efficacy outcomes? In the quest for safer alternative cationic compounds, we evaluate the effects of two novel glycerol-based lipids, GLY1 and GLY2, on the architecture and performance of nanostructured lipid carriers (NLCs). These two molecules, composed of two alkylated chains and a glycerol backbone, differ only in their polar head and proved to be efficient in reversing the zeta potential of the nanosystems to positive values. The use of unsupervised and supervised machine learning (ML) techniques unraveled their structural similarities: in spite of their common backbone, GLY1 exhibited a better performance in increasing zeta potential and cytotoxicity, while decreasing particle size. Furthermore, NLCs containing GLY1 showed a favorable hemocompatible profile, as well as an improved uptake by tumour cells. Summing-up, GLY1 circumvents the intrinsic cytotoxicity of a common surfactant, CTAB, is effective at increasing glioblastoma uptake, and exhibits encouraging anticancer activity. Moreover, the use of ML is strongly incited for formulation design and optimization.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st Floor, 3004-504 Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st Floor, 3004-504 Coimbra, Portugal
| | - Jessica Silva
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st Floor, 3004-504 Coimbra, Portugal
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Edurne Luque-Michel
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Andreia F Jorge
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - María J Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - António José Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st Floor, 3004-504 Coimbra, Portugal.
| |
Collapse
|
13
|
Basso J, Mendes M, Silva J, Sereno J, Cova T, Oliveira R, Fortuna A, Castelo-Branco M, Falcão A, Sousa J, Pais A, Vitorino C. Peptide-lipid nanoconstructs act site-specifically towards glioblastoma growth impairment. Eur J Pharm Biopharm 2020; 155:177-189. [PMID: 32828948 DOI: 10.1016/j.ejpb.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022]
Abstract
Ultra-small nanostructured lipid carriers (usNLCs) have been hypothesized to promote site-specific glioblastoma (GB) drug delivery. Envisioning a multitarget purpose towards tumor cells and microenvironment, a surface-bioconjugated usNLC prototype is herein presented. The comeback of co-delivery by repurposing atorvastatin and curcumin, as complementary therapy, was unveiled and characterized, considering colloidal properties, stability, and drug release behavior. Specifically, the impact of the surface modification of usNLCs with hyaluronic acid (HA) conjugates bearing the cRGDfK and H7k(R2)2 peptides, and folic acid (FA) on GB cells was sequentially evaluated, in terms of cytotoxicity, internalization, uptake mechanism and hemolytic character. As proof-of-principle, the biodistribution, tolerability, and efficacy of the nanocarriers were assessed, the latter in GB-bearing mice through magnetic resonance imaging and spectroscopy. The hierarchical modification of the usNLCs promotes a preferential targeting behavior to the brain, while simultaneously sparing the elimination by clearance organs. Moreover, usNLCs were found to be well tolerated by mice and able to impair tumor growth in an orthotopic xenograft model, whereas for mice administered with the non-encapsulated therapeutic compounds, tumor growth exceeded 181% in the same period. Relevant biomarkers extracted from metabolic spectroscopy were ultimately identified as a potential tumor signature.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st floor, 3004-504 Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st floor, 3004-504 Coimbra, Portugal
| | - Jessica Silva
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st floor, 3004-504 Coimbra, Portugal
| | - José Sereno
- Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st floor, 3004-504 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Rui Oliveira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st floor, 3004-504 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.
| |
Collapse
|