1
|
Wu LJ, Kottalanka RK, Chu YT, Lin ZI, Chang CJ, Ding S, Chen HY, Wu KH, Chen CK. A comparative study of titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates as catalysts for ring-opening polymerization of ε-caprolactone and L-lactide. Dalton Trans 2024; 53:15660-15673. [PMID: 39247970 DOI: 10.1039/d4dt02282c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates were synthesized, and their catalytic activities in the polymerization of ε-caprolactone and L-lactide were studied. Among five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates, FCl-Ti exhibited the highest level of catalytic activity ([CL] : [FCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 86% at 60 °C after 9 h). For six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates, SCl-Ti exhibited the highest level of catalytic activity ([CL] : [SCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 88% at 60 °C after 118 h). The five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates exhibited a higher level of catalytic activity (6.1-12.8 fold for the polymerization of ε-caprolactone and 6.2-23.0 fold for the polymerization of L-lactide) than the six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates. The density functional theory (DFT) results revealed that the free energy of the first transition state FH-Ti-TS1 is 36.49 kcal mol-1 which is lower than that of SH-Ti-TS1 (46.58 kcal mol-1), which was ascribed to the fact that the Ti-Nim bond (2.742 Å) of FH-Ti-TS1 is longer than that of SH-Ti-TS1 (2.229 Å) and reduces the repulsion between ligands.
Collapse
Affiliation(s)
- Ling-Jo Wu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Ravi Kumar Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chun-Juei Chang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuo-Hui Wu
- Department of Chemistry, National Central University, Taoyuan, Taiwan, 32001, Republic of China
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Varma C, Schroeder MK, Price BR, Khan KA, Curty da Costa E, Hochman-Mendez C, Caldarone BJ, Lemere CA. Long-Term, Sex-Specific Effects of GCRsim and Gamma Irradiation on the Brains, Hearts, and Kidneys of Mice with Alzheimer's Disease Mutations. Int J Mol Sci 2024; 25:8948. [PMID: 39201636 PMCID: PMC11355020 DOI: 10.3390/ijms25168948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney.
Collapse
Affiliation(s)
- Curran Varma
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Brittani R. Price
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Khyrul A. Khan
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Ernesto Curty da Costa
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | | | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Grafted Lactic Acid Oligomers on Lignocellulosic Filler towards Biocomposites. MATERIALS 2022; 15:ma15010314. [PMID: 35009460 PMCID: PMC8745966 DOI: 10.3390/ma15010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Lactic acid oligomers (OLAs) were in situ synthesized from lactic acid (LAc) and grafted onto chokeberry pomace (CP) particleboards by direct condensation. Biocomposites of poly (lactic acid) (PLA) and modified/unmodified CP particles containing different size fractions were obtained using a mini-extruder. To confirm the results of the grafting process, the FTIR spectra of filler particles were obtained. Performing 1HNMR spectroscopy allowed us to determine the chemical structure of synthesized OLAs. The thermal degradation of modified CP and biocomposites were studied using TGA, and the thermal characteristics of biocomposites were investigated using DSC. In order to analyse the adhesion between filler particles and PLA in biocomposites, SEM images of brittle fracture surfaces were registered. The mechanical properties of biocomposites were studied using a tensile testing machine. FTIR and 1HNMR analysis confirmed the successful grafting process of OLAs. The modified filler particles exhibited a better connection with hydrophobic PLA matrix alongside improved mechanical properties than the biocomposites with unmodified filler particles. Moreover, a DSC analysis of the biocomposites with modified CP showed a reduction in glass temperature on average by 9 °C compared to neat PLA. It confirms the plasticizing effect of grafted and ungrafted OLAs. The results are promising, and can contribute to increasing the use of agri-food lignocellulosic residue in manufacturing biodegradable packaging.
Collapse
|
5
|
Jacobs GP. Irradiation of pharmaceuticals: A literature review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Shariatinia Z, Pourzadi N. Designing novel anticancer drug release vehicles based on mesoporous functionalized MCM-41 nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Łabuś W, Kitala D, Klama-Baryła A, Szapski M, Kraut M, Smętek W, Glik J, Kucharzewski M, Rojczyk E, Utrata-Wesołek A, Trzebicka B, Szeluga U, Sobota M, Poloczek R, Kamiński A. Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. J Biomed Mater Res B Appl Biomater 2021; 110:547-563. [PMID: 34478207 DOI: 10.1002/jbm.b.34934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022]
Abstract
The nonviable allogeneic human skin grafts might be considered as the most suitable skin substitutes in the treatment of extensive and deep burns. However, in accordance to biological security such grafts require the final sterilization prior to clinical application. The aim of the study was to verify the influence of electron beam irradiation of three selected doses: 18, 25, and 35 kGy on the extracellular matrix of human skin. Prior to sterilization, the microbiological tests were conducted and revealed contamination in all examined cases. Individual groups were subjected to single electron beam radiation sterilization at proposed doses and then subjected to microbiological tests again. The results of microbiological testing performed for all irradiation doses used were negative. Only in the control group was a growth of microorganisms observed. The FTIR spectrometry tests were conducted followed by the histological evaluation and mechanical tests. In addition, cost analysis of radiation sterilization of individual doses was performed. The results of spectroscopic analysis, mechanical tests, and histological staining showed no significant changes in composition and characteristics of tested tissues after their irradiation, in comparison to control samples. The cost analysis has shown that irradiation with 18 kGy is the most cost-effective and 35 kGy is the least favorable. However, according to biological risk reduction, the recommended sterilization dose is 35 kGy, despite the higher price compared to the other doses tested.
Collapse
Affiliation(s)
- Wojciech Łabuś
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Diana Kitala
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | | | - Michał Szapski
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | - Małgorzata Kraut
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Wojciech Smętek
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Warsaw University of Technology, Warsaw, Poland
| | - Justyna Glik
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Chronic Wounds Healing Management Chronic Wound Care, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kucharzewski
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Urszula Szeluga
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Ryszard Poloczek
- Laboratory for Microscopic Examination "Diagno-Med", Siemianowice Slaskie, Poland
| | - Artur Kamiński
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, Warszawa, Poland.,National Centre for Tissue and Cell Banking, Warszawa, Poland
| |
Collapse
|
8
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
9
|
Stability of Antimicrobial Drug Molecules in Different Gravitational and Radiation Conditions in View of Applications during Outer Space Missions. Molecules 2021; 26:molecules26082221. [PMID: 33921448 PMCID: PMC8069917 DOI: 10.3390/molecules26082221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
The evolution of different antimicrobial drugs in terrestrial, microgravity and hypergravity conditions is presented within this review, in connection with their implementation during human space exploration. Drug stability is of utmost importance for applications in outer space. Instabilities may be radiation-induced or micro-/hypergravity produced. The antimicrobial agents used in space may have diminished effects not only due to the microgravity-induced weakened immune response of astronauts, but also due to the gravity and radiation-altered pathogens. In this context, the paper provides schemes and procedures to find reliable ways of fighting multiple drug resistance acquired by microorganisms. It shows that the role of multipurpose medicines modified at the molecular scale by optical methods in long-term space missions should be considered in more detail. Solutions to maintain drug stability, even in extreme environmental conditions, are also discussed, such as those that would be encountered during long-duration space exploratory missions. While the microgravity conditions may not be avoided in space, the suggested approaches deal with the radiation-induced modifications in humans, bacteria and medicines onboard, which may be fought by novel pharmaceutical formulation strategies along with radioprotective packaging and storage.
Collapse
|
10
|
Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications. Molecules 2021; 26:molecules26072068. [PMID: 33916823 PMCID: PMC8038324 DOI: 10.3390/molecules26072068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles possess a huge potential to be employed in numerous biomedical purposes; their applications may include drug delivery systems, gene therapy, and tissue engineering. However, the in vivo use in biomedical applications requires that nanoparticles exhibit sterility. Thus, diverse sterilization techniques have been developed to remove or destroy microbial contamination. The main sterilization methods include sterile filtration, autoclaving, ionizing radiation, and nonionizing radiation. Nonetheless, the sterilization processes can alter the stability, zeta potential, average particle size, and polydispersity index of diverse types of nanoparticles, depending on their composition. Thus, these methods may produce unwanted effects on the nanoparticles' characteristics, affecting their safety and efficacy. Moreover, each sterilization method possesses advantages and drawbacks; thus, the suitable method's choice depends on diverse factors such as the formulation's characteristics, batch volume, available methods, and desired application. In this article, we describe the current sterilization methods of nanoparticles. Moreover, we discuss the advantages and drawbacks of these methods, pointing out the changes in nanoparticles' biological and physicochemical characteristics after sterilization. Our main objective was to offer a comprehensive overview of terminal sterilization processes of nanoparticles for biomedical applications.
Collapse
|