1
|
Chen H, Fang D, Wang X, Gong Y, Ji Y, Pan H. Fabrication of osmotic pump tablets utilizing semisolid extrusion three-dimensional printing technology. Int J Pharm 2024; 665:124668. [PMID: 39245086 DOI: 10.1016/j.ijpharm.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
The utilization of three-dimensional (3D) printing technology is prevalent in the fabrication of oral sustained release preparations; however, there is a lack of research on 3D-printed osmotic pump tablets. A 3D-printed core-shell structure bezafibrate osmotic pump tablet was developed based on the characteristics of rapid absorption and short half-life of bezafibrate, utilizing semisolid extrusion (SSE) 3D printing technology. First, the properties of different shell materials were investigated to define the composition of the shell, and ultimately, the optimal formulation was found to be ethyl cellulose:cellulose acetate:polyethylene glycol = 2:1:2. The formulation of the tablet core was defined based on the printing performance and release behavior. The formulation consisted of bezafibrate, lactis anhydrous, sodium bicarbonate, sodium alginate, polyethylene oxide and sodium dodecyl sulfate at a ratio of 400:400:300:80:50:50. The tablet was capable of achieving zero-order release. The physicochemical properties were also characterized. The pharmacokinetic data analysis indicated that there were no statistically significant differences in the pharmacokinetic parameters between the 3D-printed tablets and the reference listed drugs. There was a strong correlation between the in vitro and in vivo results for the 3D-printed tablets. The results showed that SSE printing is a practical approach for manufacturing osmotic pump tablets.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dongyang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiangyu Wang
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Ye Gong
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yang Ji
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
2
|
Rashid A, Irfan M, Kamal Y, Asghar S, Khalid SH, Hussain G, Alshammari A, Albekairi TH, Alharbi M, Khan HU, Chauhdary Z, Vandamme TF, Khan IU. In Vitro and Biological Evaluation of Oral Fast-Disintegrating Films Containing Ranitidine HCl and Syloid ® 244FP-Based Ternary Solid Dispersion of Flurbiprofen. Pharmaceutics 2024; 16:164. [PMID: 38399224 PMCID: PMC10892821 DOI: 10.3390/pharmaceutics16020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs) containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study) and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug solubility and release when compared with pure FBP. After in vitro studies, it was observed that the analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.
Collapse
Affiliation(s)
- Aisha Rashid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Karachi, Islamabad Campus, Islamabad 45550, Pakistan;
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (T.H.A.); (M.A.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (T.H.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (T.H.A.); (M.A.)
| | - Hafeez Ullah Khan
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Thierry F. Vandamme
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Inserm/Unistra, UMR 1260 Regenerative NanoMedecine, Université de Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| |
Collapse
|
3
|
Carapeto GV, Duque MD, Issa MG, Ferraz HG. Development of Biopredictive Dissolution Method for Extended-Release Desvenlafaxine Tablets. Pharmaceutics 2023; 15:pharmaceutics15051544. [PMID: 37242786 DOI: 10.3390/pharmaceutics15051544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence studies. For this purpose, a PBBM was developed in GastroPlus® and combined with a Taguchi L9 design, to evaluate the impact of different drug products (Reference, Generic #1 and Generic #2) and dissolution test conditions on desvenlafaxine release. The influence of the superficial area/volume ratio (SA/V) of the tablets was observed, mainly for Generic #1, which presented higher SA/V than the others, and a high amount of drug dissolved under similar test conditions. The dissolution test conditions of 900 mL of 0.9% NaCl and paddle at 50 rpm with sinker showed to be biopredictive, as it was possible to demonstrate virtual bioequivalence for all products, despite their release-pattern differences, including Generic #3 as an external validation. This approach led to a rational development of a biopredictive dissolution method for desvenlafaxine ER tablets, providing knowledge that may help the process of drug product and dissolution method development.
Collapse
Affiliation(s)
- Gustavo Vaiano Carapeto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 580, São Paulo 05508-080, SP, Brazil
| | - Marcelo Dutra Duque
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo-UNIFESP, Rua São Nicolau, 210 Centro, Diadema 09913-030, SP, Brazil
| | - Michele Georges Issa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 580, São Paulo 05508-080, SP, Brazil
| | - Humberto Gomes Ferraz
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 580, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
4
|
Fan C, Wang X, Wang Y, Xi Z, Wang Y, Zhu S, Wang M, Xu L. Fabricating a PDA-Liposome Dual-Film Coated Hollow Mesoporous Silica Nanoplatform for Chemo-Photothermal Synergistic Antitumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15041128. [PMID: 37111615 PMCID: PMC10144002 DOI: 10.3390/pharmaceutics15041128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we synthesized hollow mesoporous silica nanoparticles (HMSNs) coated with polydopamine (PDA) and a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified hybrid lipid membrane (denoted as HMSNs-PDA@liposome-TPGS) to load doxorubicin (DOX), which achieved the integration of chemotherapy and photothermal therapy (PTT). Dynamic light scattering (DLS), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectrometry (FT-IR), and small-angle X-ray scattering (SAXS) were used to show the successful fabrication of the nanocarrier. Simultaneously, in vitro drug release experiments showed the pH/NIR-laser-triggered DOX release profiles, which could enhance the synergistic therapeutic anticancer effect. Hemolysis tests, non-specific protein adsorption tests, and in vivo pharmacokinetics studies exhibited that the HMSNs-PDA@liposome-TPGS had a prolonged blood circulation time and greater hemocompatibility compared with HMSNs-PDA. Cellular uptake experiments demonstrated that HMSNs-PDA@liposome-TPGS had a high cellular uptake efficiency. In vitro and in vivo antitumor efficiency evaluations showed that the HMSNs-PDA@liposome-TPGS + NIR group had a desirable inhibitory activity on tumor growth. In conclusion, HMSNs-PDA@liposome-TPGS successfully achieved the synergistic combination of chemotherapy and photothermal therapy, and is expected to become one of the candidates for the combination of photothermal therapy and chemotherapy antitumor strategies.
Collapse
Affiliation(s)
- Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyu Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuwen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuxin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Trivedi R, Chatterjee B, Kalave S, Pandya M. Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review. Curr Drug Deliv 2023; 20:694-707. [PMID: 35899950 DOI: 10.2174/1567201819666220721111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rishab Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Mrugank Pandya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
6
|
Ogueri KS, Shamblin SL. Osmotic-controlled release oral tablets: technology and functional insights. Trends Biotechnol 2021; 40:606-619. [PMID: 34689998 DOI: 10.1016/j.tibtech.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
In recent years, oral osmotic tablets have sparked a therapeutic paradigm for controlled-release dosage forms due to their intrinsic insensitivity to physiological and physicochemical factors. Despite these benefits, the design of an optimal osmotic technology is precluded by various challenges. These limitations include manufacturing complexity, the lack of understanding of the functional mechanics, and inadequate optimization for the desired bio-performance. This paper systematically reviews the development of an osmotic-driven drug delivery system and the strategy for a zero-order release profile with an emphasis on swellable core technology. We discuss the applicability of the various types of osmotic tablets, their suitability to specific needs, and factors that drive the technology selection. Finally, we review the challenges, opportunities, and future perspectives associated with osmotic tablets.
Collapse
|
7
|
Gundu R, Pekamwar S, Shelke S, Kulkarni D, Shep S. Development, optimization and pharmacokinetic evaluation of biphasic extended-release osmotic drug delivery system of trospium chloride for promising application in treatment of overactive bladder. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00311-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The research was aimed with an approach to formulate biphasic extended-release system of trospium chloride resulting in controlled release of drug up to 24 h with prospects of better control on urinary frequency, efficacy, tolerability, and improved patient compliance. The push–pull osmotic pump (PPOP) bi-layered tablet of trospium chloride (60 mg) was developed with the use of immediate-release polymers in the pull layer (30 mg drug) and polyethylene oxide in the push layer (remaining 30 mg drug). The tablet was formulated by compression after non-aqueous granulation, seal coating, and semipermeable coating. The tablet prepared was laser drilled to create an orifice for drug release.
Results
Comparative in vitro dissolution and in vivo pharmacokinetic analysis of available marketed formulations demonstrated the complete drug release within 16–18 h; hence the developed biphasic extended-release system has its great importance as it provides zero-order release up to 24 h.
Conclusions
The developed biphasic extended-release drug delivery system of trospium chloride provides the drug release for 24 h with effective plasma concentration in comparison with the available marketed formulation. Extended release of drug from the developed formulation provides scope for its promising application in the treatment of overactive bladder (OAB).
Collapse
|