1
|
El-Bahrawy NR, Hafez AAAEL, Elmekawy A, Salem M, Sarhan N, Morsy R. Development and characterization of nano-hydroxyapatite/gelatin/PVA/alginate-based multifunctional active scaffolds for bone regeneration: An in vitro and in vivo study. Int J Biol Macromol 2025:141160. [PMID: 39965692 DOI: 10.1016/j.ijbiomac.2025.141160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/04/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Multifunctional porous bone scaffolds that combine reparative and therapeutic features are promising for bone tissue engineering applications. Therefore, we developed freeze-dried scaffolds based on the in-situ synthesis of hydroxyapatite nanoparticles (HAp NPs) within a gelatin-polyvinyl alcohol (PVA)-alginate matrix using a co-precipitation method. Ceftazidime and 5-fluorouracil (5-FU) were used as drug models and were separately loaded into the fabricated scaffolds. The hybrid scaffolds exhibited an ultimate compressive strength of 1.1 MPa and flexible behavior favored for fitting irregular bone defects. 5-FU-loaded scaffolds showed higher bioactive potential within 3 days compared to ceftazidime-loaded scaffolds. The scaffolds exhibited a long-term degradation rate, and thereby prolonged release of ceftazidim and 5-FU for up to 28 days. 5-FU-loaded scaffolds showed excellent nearly equal antibacterial activity to ceftazidime-loaded scaffolds against Staphylococcus epidermidis and Escherichia coli. Osteosarcoma cell death was achieved by increased concentrations of ceftazidime and. 5-FU treatment above 300 μg/mL and 250 μg/mL, respectively. The developed scaffolds displayed higher bone formation ability with better osteogenesis in a femoral rat bone defect model compared to the control sample. This work represents a promising solution for bone defect repair and provides insight into the development of multifunctional scaffolds for local chemotherapy and bone tissue engineering applications.
Collapse
Affiliation(s)
- Nadia R El-Bahrawy
- Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | | | - Ahmed Elmekawy
- Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Naglaa Sarhan
- Histology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reda Morsy
- Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Palmkron SB, Bergenståhl B, Hall S, Håkansson S, Wahlgren M, Larsson E, Fureby AM. The Impact of Annealing Methods on the Encapsulating Structure and Storage-Stability of Freeze-Dried Pellets of Probiotic Bacteria. Pharm Res 2024; 41:1671-1682. [PMID: 39078576 PMCID: PMC11362187 DOI: 10.1007/s11095-024-03751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE This paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (μCT), the material thickness is then correlated to the storage stability of the encapsulated cells. METHODS A formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and μCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure. RESULTS The varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process. CONCLUSIONS Extensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.
Collapse
Affiliation(s)
- Shuai Bai Palmkron
- Department of Process and Life Science Engineering, Division of Food and Pharma Lund University, 221 00, Lund, Sweden.
| | - Björn Bergenståhl
- Department of Process and Life Science Engineering, Division of Food and Pharma Lund University, 221 00, Lund, Sweden
| | - Stephen Hall
- LUNARC, Lund University, Box 118, 221 00, Lund, Sweden
- Division of Solid Mechanics, Department of Construction Sciences, Lund University, 22100, Lund, Sweden
| | - Sebastian Håkansson
- Division of Applied Microbiology, Department of Chemistry, Lund University, 221 00, Lund, Sweden
- BioGaia AB, 241 38, Eslöv, Sweden
| | - Marie Wahlgren
- Department of Process and Life Science Engineering, Division of Food and Pharma Lund University, 221 00, Lund, Sweden
| | - Emanuel Larsson
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
- LUNARC, Lund University, Box 118, 221 00, Lund, Sweden
| | - Anna Millqvist Fureby
- Department of Process and Life Science Engineering, Division of Food and Pharma Lund University, 221 00, Lund, Sweden
- Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Stockholm, Sweden
| |
Collapse
|
3
|
Lyophilization for Formulation Optimization of Drug-Loaded Thermoresponsive Polyelectrolyte Complex Nanogels from Functionalized Hyaluronic Acid. Pharmaceutics 2023; 15:pharmaceutics15030929. [PMID: 36986789 PMCID: PMC10053597 DOI: 10.3390/pharmaceutics15030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
The lyophilization of nanogels is practical not only for their long-term conservation but also for adjusting their concentration and dispersant type during reconstitution for different applications. However, lyophilization strategies must be adapted to each kind of nanoformulation in order to minimize aggregation after reconstitution. In this work, the effects of formulation aspects (i.e., charge ratio, polymer concentration, thermoresponsive grafts, polycation type, cryoprotectant type, and concentration) on particle integrity after lyophilization and reconstitution for different types of polyelectrolyte complex nanogels (PEC-NGs) from hyaluronic acid (HA) were investigated. The main objective was to find the best approach for freeze-drying thermoresponsive PEC-NGs from Jeffamine-M-2005-functionalized HA, which has recently been developed as a potential platform for drug delivery. It was found that freeze-drying PEC-NG suspensions prepared at a relatively low polymer concentration of 0.2 g.L−1 with 0.2% (m/v) trehalose as a cryoprotectant allow the homogeneous redispersion of PEC-NGs when concentrated at 1 g.L−1 upon reconstitution in PBS without important aggregation (i.e., average particle size remaining under 350 nm), which could be applied to concentrate curcumin (CUR)-loaded PEC-NGs for optimizing CUR content. The thermoresponsive release of CUR from such concentrated PEC-NGs was also reverified, which showed a minor effect of freeze-drying on the drug release profile.
Collapse
|
4
|
Thakral S, Sonje J, Munjal B, Bhatnagar B, Suryanarayanan R. Mannitol as an Excipient for Lyophilized Injectable Formulations. J Pharm Sci 2023; 112:19-35. [PMID: 36030846 DOI: 10.1016/j.xphs.2022.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
The review summarizes the current state of knowledge of mannitol as an excipient in lyophilized injectable small and large molecule formulations. When compared with glycine, the physicochemical properties of mannitol make it a desirable and preferred bulking agent. Though mannitol is a popular bulking agent in freeze-dried formulations, its use may pose certain challenges such as vial breakage or its existence as a metastable crystalline hemihydrate in the final cake, necessitating appropriate mitigation strategies. The understanding of the phase behavior of mannitol in aqueous systems, during the various stages of freeze-drying, can be critical for the optimization of freeze-drying cycle parameters in multi-component formulations. Finally, using a decision tree as a guiding tool, we demonstrate the use of orthogonal techniques for attaining a stable and cost-effective lyophilized drug product containing mannitol.
Collapse
Affiliation(s)
- Seema Thakral
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America.
| | - Jayesh Sonje
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Bhushan Munjal
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Bakul Bhatnagar
- Pfizer Inc., BioTherapeutics, Pharmaceutical Sciences, 1 Burtt Road, Andover, MA 01810, United States of America
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
5
|
Palmkron SB, Bergenståhl B, Håkansson S, Wahlgren M, Fureby AM, Larsson E. Quantification of structures in freeze-dried materials using X-ray microtomography. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Experimental Study of the Impact of Pore Structure on Drying Kinetics and Sublimation Front Patterns. Pharmaceutics 2022; 14:pharmaceutics14081538. [PMID: 35893794 PMCID: PMC9332246 DOI: 10.3390/pharmaceutics14081538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Freeze-drying frozen maltodextrin solutions with solid contents of 5% and 30% (w/w) was experimentally investigated using neutron imaging at PSI Villigen/Switzerland. Different solid contents, as well as annealing at −5 °C for 11 h, were used to modify the porous structure of the samples, which was quantified using X-ray computed tomography. Annealing of the 5% (w/w) sample, with a pore size distribution (PSD) of 23.7 ± 11.1 µm, yielded a very open pore space with high porosity (ε = 0.96) and a PSD of 33.0 ± 27.0 µm. In contrast, the higher solid content resulted in small, lamellar, narrow pores with high anisotropy and a porosity of ε = 0.65, as well as a PSD of 13.5 ± 4 µm. In operando neutron imaging was used to show the impact of the structure of frozen maltodextrin on the overall drying kinetics and shape of the sublimation front during freeze-drying. For this purpose, a freeze-drying stage was employed, which allowed a novel approach to time- and space-resolved monitoring of the ice phase. The sublimation front propagation was quantitatively analyzed based on ice saturation profiles and sublimation rates. The dependence of drying velocity on structure is nicely demonstrated by the data. In addition, it is shown that the sublimation front widened during freeze-drying, resulting in either rather concave or convex shape depending on morphological parameters.
Collapse
|
7
|
Siljeström S, Neubeck A, Steele A. Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record. PLoS One 2022; 17:e0269568. [PMID: 35767560 PMCID: PMC9242450 DOI: 10.1371/journal.pone.0269568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities.
Collapse
Affiliation(s)
- Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
- * E-mail:
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew Steele
- Carnegie Institution for Science, Earth and Planetary Laboratory, Washington, DC, United States of America
| |
Collapse
|
8
|
Sacher S, Poms J, Dekner M, Wallner-Mang S, Vogt M, Khinast JG, Schennach R. X-ray imaging: A potential enabler of automated particulate detection and cake-structure analysis in lyophilized products? INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100101. [PMID: 34755105 PMCID: PMC8556755 DOI: 10.1016/j.ijpx.2021.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
The presence of particulate matter in parenteral products is a major concern since it affects the patients' safety and is one of the main reasons for product recalls. Conventional quality control is based on a visual inspection, which is a labour-intensive task. Limited to clear solutions and the surface of lyophilised products, it cannot be applied to opaque containers. This study assesses the application of X-ray imaging for detecting the particulate matter in a pharmaceutical lyophilized product. The most common types of particulates (i.e., steel, glass, lyo stopper, polymers and organics in different size classes) were intentionally spiked in vials. After optimizing all relevant parameters of the X-ray set-up, all classes of particulates were detected. At the same time, due to contrast enhancement, the inherent structures of lyophilized cake became obvious. This work addresses the potential and limits of X-ray technology in that regard, paving the way for automated image-based particulate matter detection. Moreover, this paper discusses using this approach to predict critical quality attributes (CQAs) of the drug product based on the cake structure attributes.
Collapse
Affiliation(s)
- Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Michael Dekner
- Baxter AG (part of Takeda), Industriestraße 67, 1220 Wien, Austria
| | | | - Martin Vogt
- Syntegon Technology GmbH, Postfach 1127, 71301 Waiblingen, Germany
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| | - Robert Schennach
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/2, 8010 Graz, Austria
| |
Collapse
|
9
|
Vallerinteavide Mavelli G, Sadeghi S, Vaidya SS, Kong SN, Drum CL. Nanoencapsulation as a General Solution for Lyophilization of Labile Substrates. Pharmaceutics 2021; 13:1790. [PMID: 34834205 PMCID: PMC8622885 DOI: 10.3390/pharmaceutics13111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein macromolecules occur naturally at the nanoscale. The use of a dedicated nanoparticle as a lyophilization excipient, however, has not been reported. Because biopolymeric and lipid nanoparticles often denature protein macromolecules and commonly lack the structural rigidity to survive the freeze-drying process, we hypothesized that surrounding an individual protein substrate with a nanoscale, thermostable exoshell (tES) would prevent aggregation and protect the substrate from denaturation during freezing, sublimation, and storage. We systematically investigated the properties of tES, including secondary structure and its homogeneity, throughout the process of lyophilization and found that tES have a near 100% recovery following aqueous reconstitution. We then tested the hypothesis that tES could encapsulate a model substrate, horseradish peroxidase (HRP), using charge complementation and pH-mediated controlled assembly. HRP were encapsulated within the 8 nm internal tES aqueous cavity using a simplified loading procedure. Time-course experiments demonstrated that unprotected HRP loses 95% of activity after 1 month of lyophilized storage. After encapsulation within tES nanoparticles, 70% of HRP activity was recovered, representing a 14-fold improvement and this effect was reproducible across a range of storage temperatures. To our knowledge, these results represent the first reported use of nanoparticle encapsulation to stabilize a functional macromolecule during lyophilization. Thermostable nanoencapsulation may be a useful method for the long-term storage of labile proteins.
Collapse
Affiliation(s)
- Girish Vallerinteavide Mavelli
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Samira Sadeghi
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore 138672, Singapore
| | - Siddhesh Sujit Vaidya
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Shik Nie Kong
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Chester Lee Drum
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| |
Collapse
|
10
|
Fiedler D, Hartl S, Gerlza T, Trojacher C, Kungl A, Khinast J, Roblegg E. Comparing freeze drying and spray drying of interleukins using model protein CXCL8 and its variants. Eur J Pharm Biopharm 2021; 168:152-165. [PMID: 34474111 DOI: 10.1016/j.ejpb.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Spray-dried products, such as synthetic peptides and hormones, have already been approved by the U.S. Food and Drug Agency and the European Medicines Agency, while spray-dried antibodies or interleukins, are not yet available on the market. Concerning the latter group, knowledge on whether and how spray-drying (SD) can be performed without adversely affecting their biological activity is lacking. Accordingly, this study aimed at establishing a SD process (Büchi B-90 spray dryer) using three Interleukin-8 based proteins (7-74 kDa) that were dispersed in phosphate buffered saline to maintain their stability. A Box-Behnken Design of Experiments was conducted to identify the appropriate process parameters taking into account the thermal stability of interleukin-8. In parallel, a FD process was developed. Both powders were stored for up to 12 weeks. Powder characterization included residual moisture evaluation and the mean particle size of the SD powder was investigated with Laser Diffraction Analysis. The hydrodynamic volume was measured via size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The secondary structure of the model proteins in the solid state was assessed with Fourier-transformation infrared spectroscopy for detecting the protein folding patterns and reconstituted with Circular Dichroism Spectroscopy. Finally, the binding affinity was studied with Surface Plasmon Resonance and Isothermal Fluorescence Titration, the protein stability with Chaotropic Unfolding, and the activity studies were carried out with the chemotaxis assay. The results showed that SD and FD powders with a residual moisture of less than 5 wt% were obtained. The interleukins showed no unfolding upon processing, neither in solid state nor reconstituted. Oligomerization was observed for FD, but not for SD interleukins. However, the unfolding, binding affinity and activity of all interleukins examined did not decrease in neither SD nor FD powders, even after 12 weeks of storage. Thus, it can be concluded that SD of interleukin formulations at outlet temperatures close to ambient temperature is a promising process for transferring them into a stable powder.
Collapse
Affiliation(s)
- Daniela Fiedler
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010 Graz, Austria
| | - Sonja Hartl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology & Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Christina Trojacher
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Johannes Khinast
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology & Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria.
| |
Collapse
|
11
|
Trenkenschuh E, Savšek U, Friess W. Formulation, process, and storage strategies for lyophilizates of lipophilic nanoparticulate systems established based on the two models paliperidone palmitate and solid lipid nanoparticles. Int J Pharm 2021; 606:120929. [PMID: 34303819 DOI: 10.1016/j.ijpharm.2021.120929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Lyophilization formulation and process development for lipophilic nanoparticle (NPs) products is highly challenging as the NPs have a low colloidal stability. We compared two different NP types, pure paliperidone palmitate nanocrystals and trimyristin solid lipid nanoparticles regarding formulation, process, and storage stability aspects. Freeze-thaw studies were conducted to investigate the basic formulation aspects such as buffer type, pH, and ionic strength as well as different cryoprotectants. In freeze-drying conventional ramp freezing was performed and compared to freezing with an annealing step added or with controlled ice nucleation. Different formulations were lyophilized and tested for short-term storage stability up to 6 weeks. Samples were analyzed for particle size, subvisible particle number, specific surface area, residual moisture, crystallinity, and glass transition temperature. Sucrose significantly better stabilized both NP types against freeze-thaw stress compared to mannitol demonstrating the importance of a fully amorphous matrix. While the impact of buffer type and pH was negligible, the aggregation propensity of NPs was reduced in presence of NaCl. The freezing step also impacted NP aggregation but the effect was less important than the formulation design. Surfactants did not necessarily improve the colloidal stability but resulted in a lower glass transition temperature of the lyophilizates and may cause phase separation which limits storage stability. This hurdle can be overcome by using a hydroxypropyl-β-cyclodextrin/ sucrose mixture as cryoprotectant. In general, we could show a similar freeze-drying behavior of the two NP types. Thus, we established a formulation and process approach to achieve stable lyophilizates of lipophilic NPs based on two different types of NPs. The general rules should be transferable to other NPs facilitating lyophilization development.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ula Savšek
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|