1
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Rodrigues CH, Silva BP, Silva MLR, Gouveia DC, Fontes A, Macêdo DPC, Santos BS. Methylene blue@silver nanoprisms conjugates as a strategy against Candida albicans isolated from balanoposthitis using photodynamic inactivation. Photodiagnosis Photodyn Ther 2024; 46:104066. [PMID: 38552814 DOI: 10.1016/j.pdpdt.2024.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Balanoposthitis can affect men in immunocompromised situations, such as HIV infection and diabetes. The main associated microorganism is Candida albicans, which can cause local lesions, such as the development of skin cracks associated with itching. As an alternative to conventional treatment, there is a growing interest in the photodynamic inactivation (PDI). It has been shown that the association of photosensitizers with metallic nanoparticles may improve the effectiveness of PDI via plasmonic effect. We have recently shown that the association of methylene blue (MB), a very known photosensitizer, with silver prismatic nanoplatelets (AgNPrs) improved PDI of a resistant strain of Staphylococcus aureus. To further investigate the experimental conditions involved in PDI improvement, in the present study, we studied the effect of MB concentration associated with AgNPrs exploring spectral analysis, zeta potential measurements, and biological assays, testing the conjugated system against C. albicans isolated from a resistant strain of balanoposthitis. The AgNPrs were synthesized through silver anisotropic seed growth induced by the anionic stabilizing agent poly(sodium 4-styrenesulfonate) and showed a plasmon band fully overlapping the MB absorption band. MB and AgNPrs were conjugated through electrostatic association and three different MB concentrations were tested in the nanosystems. Inactivation using red LED light (660 nm) showed a dose dependency in respect to the MB concentration in the conjugates. Using the highest MB concentration (100 µmol⋅L-1) with AgNPr, it was possible to completely inactivate the microorganisms upon a 2 min irradiation exposure. Analyzing optical changes in the conjugates we suggest that these results indicate that AgNPrs are enhancers of MB photodynamic action probably by a combined mechanism of plasmonic effect and reduction of MB dimerization. Therefore, MBAgNPrs can be considered a suitable choice to be applied in PDI of resistant microorganisms.
Collapse
Affiliation(s)
- Cláudio H Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Bruna Pereira Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Marques L R Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Dimitri C Gouveia
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Danielle P C Macêdo
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| |
Collapse
|
3
|
Nie M, Zhang P, Pathak JL, Wang X, Wu Y, Yang J, Shen Y. Photodynamic therapy in periodontitis: A narrative review. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12946. [PMID: 38288767 DOI: 10.1111/phpp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Periodontitis, a chronic infectious disease, is primarily caused by a dysbiotic microbiome, leading to the destruction of tooth-supporting tissues and tooth loss. Photodynamic therapy (PDT), which combines excitation light with photosensitizers (PS) and oxygen to produce antibacterial reactive oxygen species, is emerging as a promising adjuvant treatment for periodontitis. METHODS This review focuses on studies examining the antibacterial effects of PDT against periodontal pathogens. It also explores the impact of PDT on various aspects of periodontal health, including periodontal immune cells, human gingival fibroblasts, gingival collagen, inflammatory mediators, cytokines in the periodontium, vascular oxidative stress, vascular behavior, and alveolar bone health. Clinical trials assessing the types of PSs and light sources used in PDT, as well as its effects on clinical and immune factors in gingival sulcus fluid and the bacterial composition of dental plaque, are discussed. RESULTS The findings indicate that PDT is effective in reducing periodontal pathogens and improving markers of periodontal health. It has shown positive impacts on periodontal immune response, tissue integrity, and alveolar bone preservation. Clinical trials have demonstrated improvements in periodontal health and alterations in the microbial composition of dental plaque when PDT is used alongside conventional treatments. CONCLUSIONS PDT offers a promising adjunctive treatment for periodontitis, with benefits in bacterial reduction, tissue healing, and immune modulation. This article highlights the potential of PDT in periodontal therapy and emphasizes the need for further research to refine its clinical application and efficacy.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Zhang
- Department of Oral Medicine, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Janak Lal Pathak
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yafei Wu
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingmei Yang
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqin Shen
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
5
|
Marković ZM, Mišović AS, Zmejkoski DZ, Zdravković NM, Kovač J, Bajuk-Bogdanović DV, Milivojević DD, Mojsin MM, Stevanović MJ, Pavlović VB, Marković BMT. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12050919. [PMID: 37237822 DOI: 10.3390/antibiotics12050919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.
Collapse
Affiliation(s)
- Zoran M Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Aleksandra S Mišović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Danica Z Zmejkoski
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Nemanja M Zdravković
- Scientific Veterinary Institute of Serbia, Janisa Janulisa 14, 11107 Belgrade, Serbia
| | - Janez Kovač
- Jozef Stefan Institute, Department of Surface Engineering-F4, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | | | - Dušan D Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Marija M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena J Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Vladimir B Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Biljana M Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
6
|
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023]
Abstract
Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory. Photodynamic therapy is therefore based on the administration of a photosensitizer with subsequent light irradiation within the absorption maxima of this substance followed by reactive oxygen species formation and finally cell death. Although this treatment is not a novelty, there is an endeavor for various modifications to the therapy. For example, selectivity and efficiency of the photosensitizer, as well as irradiation with various types of light sources are still being modified to improve final results of the photodynamic therapy. The main aim of this review is to summarize anticancer and antibacterial modifications, namely various compounds, approaches, and techniques, to enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Marketa Kolarikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Barton-Tomankova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Valkova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
7
|
Soares JCM, Luiz MT, Oshiro Junior JA, Besegato JF, de Melo PBG, Rastelli ANDS, Chorilli M. Antimicrobial photodynamic therapy mediated by methylene blue-loaded polymeric micelles against Streptococcus mutans and Candida albicans biofilms. Photodiagnosis Photodyn Ther 2023; 41:103285. [PMID: 36639007 DOI: 10.1016/j.pdpdt.2023.103285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Streptococcus mutans and Candida albicans can colonize the teeth, the oral cavity as biofilm and can cause oral infections. Thus, strategies to prevent and control oral biofilms are requested. The present study aims the development and characterization of methylene blue (MB)-loaded polymeric micelles for antimicrobial photodynamic therapy (aPDT) against Streptococcus mutans and Candida albicans biofilms METHODS: MB-loaded polymeric micelles were produced and characterized by particle size, polydispersity index, morphology, zeta potential, stability, MB release profile, and antimicrobial effect against S. mutans and C. albicans biofilms. RESULTS MB-loaded polymeric micelles showed a reduced particle size, moderate polydisperse profile, spherical and neutral shape, which demonstrated to be promising features to allow micelles penetration into biofilms. Antimicrobial effect against bacterial and yeast biofilms was demonstrated once MB was irradiated by light under 660 nm (aPDT). Furthermore, MB-loaded polymeric micelles showed significant inhibition of S. mutans and C. albicans biofilms. Furthermore, the treatment with MB-micelles incubated with high pre-incubation times (15 and 30 min) were more effective than 5 min. It can be explained by the time required for this nanosystem to penetrate the innermost layer of biofilms and release MB for aPDT. CONCLUSION MB-loaded polymeric micelles can effectively decrease the bacteria and yeast viability and it may cause positive impacts in the clinical practice. Thus, the developed formulation showed potential in the treatment to remove oral biofilms, but clinical studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Jonas Corsino Maduro Soares
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil.
| | - João Augusto Oshiro Junior
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil
| | - João Felipe Besegato
- Departament of Restorative Dentistry, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Priscila Borges Gobbo de Melo
- Departament of Restorative Dentistry, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil.
| |
Collapse
|
8
|
Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 2023; 13:1020995. [PMID: 36687594 PMCID: PMC9850114 DOI: 10.3389/fmicb.2022.1020995] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Given the emergence of resistant bacterial strains and novel microorganisms that globally threaten human life, moving toward new treatment modalities for microbial infections has become a priority more than ever. Antimicrobial photodynamic therapy (aPDT) has been introduced as a promising and non-invasive local and adjuvant treatment in several oral infectious diseases. Its efficacy for elimination of bacterial, fungal, and viral infections and key pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Candida albicans, and Enterococcus faecalis have been investigated by many invitro and clinical studies. Researchers have also investigated methods of increasing the efficacy of such treatment modalities by amazing developments in the production of natural, nano based, and targeted photosensitizers. As clinical studies have an important role in paving the way towards evidence-based applications in oral infection treatment by this method, the current review aimed to provide an overall view of potential clinical applications in this field and summarize the data of available randomized controlled clinical studies conducted on the applications of aPDT in dentistry and investigate its future horizons in the dental practice. Four databases including PubMed (Medline), Web of Science, Scopus and Embase were searched up to September 2022 to retrieve related clinical studies. There are several clinical studies reporting aPDT as an effective adjunctive treatment modality capable of reducing pathogenic bacterial loads in periodontal and peri-implant, and persistent endodontic infections. Clinical evidence also reveals a therapeutic potential for aPDT in prevention and reduction of cariogenic organisms and treatment of infections with fungal or viral origins, however, the number of randomized clinical studies in these groups are much less. Altogether, various photosensitizers have been used and it is still not possible to recommend specific irradiation parameters due to heterogenicity among studies. Reaching effective clinical protocols and parameters of this treatment is difficult and requires further high quality randomized controlled trials focusing on specific PS and irradiation parameters that have shown to have clinical efficacy and are able to reduce pathogenic bacterial loads with sufficient follow-up periods.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Hadilou
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Reza Fekrazad,
| |
Collapse
|
9
|
Next-Generation Examination, Diagnosis, and Personalized Medicine in Periodontal Disease. J Pers Med 2022; 12:jpm12101743. [PMID: 36294882 PMCID: PMC9605396 DOI: 10.3390/jpm12101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Periodontal disease, a major cause of tooth loss, is an infectious disease caused by bacteria with the additional aspect of being a noncommunicable disease closely related to lifestyle. Tissue destruction based on chronic inflammation is influenced by host and environmental factors. The treatment of periodontal disease varies according to the condition of each individual patient. Although guidelines provide standardized treatment, optimization is difficult because of the wide range of treatment options and variations in the ideas and skills of the treating practitioner. The new medical concepts of “precision medicine” and “personalized medicine” can provide more predictive treatment than conventional methods by stratifying patients in detail and prescribing treatment methods accordingly. This requires a new diagnostic system that integrates information on individual patient backgrounds (biomarkers, genetics, environment, and lifestyle) with conventional medical examination information. Currently, various biomarkers and other new examination indices are being investigated, and studies on periodontal disease-related genes and the complexity of oral bacteria are underway. This review discusses the possibilities and future challenges of precision periodontics and describes the new generation of laboratory methods and advanced periodontal disease treatment approaches as the basis for this new field.
Collapse
|
10
|
Aires-Fernandes M, Botelho Costa R, Rochetti do Amaral S, Mussagy CU, Santos-Ebinuma VC, Primo FL. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice. Molecules 2022; 27:molecules27206848. [PMID: 36296441 PMCID: PMC9609562 DOI: 10.3390/molecules27206848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that has been applied in studies for the treatment of various diseases. In this context, PDT has been suggested as a new therapy or adjuvant therapy to traditional cancer therapy. The mode of action of PDT consists of the generation of singlet oxygen (¹O2) and reactive oxygen species (ROS) through the administration of a compound called photosensitizer (PS), a light source, and molecular oxygen (3O2). This combination generates controlled photochemical reactions (photodynamic mechanisms) that produce ROS, such as singlet oxygen (¹O2), which can induce apoptosis and/or cell death induced by necrosis, degeneration of the tumor vasculature, stimulation of the antitumor immune response, and induction of inflammatory reactions in the illuminated region. However, the traditional compounds used in PDT limit its application. In this context, compounds of biotechnological origin with photosensitizing activity in association with nanotechnology are being used in PDT, aiming at its application in several types of cancer but with less toxicity toward neighboring tissues and better absorption of light for more aggressive types of cancer. In this review, we present studies involving innovatively developed PS that aimed to improve the efficiency of PDT in cancer treatment. Specifically, we focused on the clinical translation and application of PS of natural origin on cancer.
Collapse
Affiliation(s)
- Mariza Aires-Fernandes
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Ramon Botelho Costa
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Stéphanie Rochetti do Amaral
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Valéria C. Santos-Ebinuma
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-4661
| |
Collapse
|
11
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. Efficacy of Antimicrobial Photodynamic Therapy Mediated by Photosensitizers Conjugated with Inorganic Nanoparticles: Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:2050. [PMID: 36297486 PMCID: PMC9612113 DOI: 10.3390/pharmaceutics14102050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a method that does not seem to promote antimicrobial resistance. Photosensitizers (PS) conjugated with inorganic nanoparticles for the drug-delivery system have the purpose of enhancing the efficacy of aPDT. The present study was to perform a systematic review and meta-analysis of the efficacy of aPDT mediated by PS conjugated with inorganic nanoparticles. The PubMed, Scopus, Web of Science, Science Direct, Cochrane Library, SciELO, and Lilacs databases were searched. OHAT Rob toll was used to assess the risk of bias. A random effect model with an odds ratio (OR) and effect measure was used. Fourteen articles were able to be included in the present review. The most frequent microorganisms evaluated were Staphylococcus aureus and Escherichia coli, and metallic and silica nanoparticles were the most common drug-delivery systems associated with PS. Articles showed biases related to blinding. Significant results were found in aPDT mediated by PS conjugated with inorganic nanoparticles for overall reduction of microorganism cultured in suspension (OR = 0.19 [0.07; 0.67]/p-value = 0.0019), E. coli (OR = 0.08 [0.01; 0.52]/p-value = 0.0081), and for Gram-negative bacteria (OR = 0.12 [0.02; 0.56/p-value = 0.0071). This association approach significantly improved the efficacy in the reduction of microbial cells. However, additional blinding studies evaluating the efficacy of this therapy over microorganisms cultured in biofilm are required.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Pediatric Dentistry and Orthodontic, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| |
Collapse
|
12
|
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346:300-316. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach to aid the fight against looming antibiotic resistance. aPDT harnesses the energy of light through photosenstizers to generate highly reactive oxygen species that can inactivate bacteria and fungi with no resistance. To date aPDT has shown great efficacy against microbes causing localized infections in the skin and the oral cavity. However, its wide application in clinical settings has been limited due to both physicochemical and biological challenges. Over the past decade nanomaterials have contributed to promoting photosensitizer performance and aPDT efficiency, yet further developments are required to establish accredited treatment options. In this review we discuss the challenges facing the clinical application of aPDT and the opportunities that nanotechnology may offer to promote the safety and efficiency of aPDT.
Collapse
Affiliation(s)
- Muhammed Awad
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
13
|
Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases. Biomedicines 2021; 9:biomedicines9101435. [PMID: 34680553 PMCID: PMC8533418 DOI: 10.3390/biomedicines9101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogenic oral biofilms are now recognized as a key virulence factor in many microorganisms that cause the heavy burden of oral infectious diseases. Recently, new investigations in the nanotechnology field have propelled the development of novel biomaterials and approaches to control bacterial biofilms, either independently or in combination with other substances such as drugs, bioactive molecules, and photosensitizers used in antimicrobial photodynamic therapy (aPDT) to target different cells. Moreover, nanoparticles (NPs) showed some interesting capacity to reverse microbial dysbiosis, which is a major problem in oral biofilm formation. This review provides a perspective on oral bacterial biofilms targeted with NP-mediated treatment approaches. The first section aims to investigate the effect of NPs targeting oral bacterial biofilms. The second part of this review focuses on the application of NPs in aPDT and drug delivery systems.
Collapse
|
14
|
Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021; 604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
One of the challenges to the success of veterinary pharmacotherapy is the limited number of drugs and dosage forms available exclusively to this market, due to the interspecies variability of animals, such as anatomy, physiology, pharmacokinetics, and pharmacodynamics. For this reason, studies in this area have become a highlight, since they are still scarce in comparison with those on human drug use. To overcome many limitations related to the bioavailability, efficacy, and safety of pharmacotherapy in animals, especially livestock and domestic animals, polymers-based drug delivery systems are promising tools if they guarantee greater selectivity and less toxicity in dosage forms. In addition, these tools may be developed according to the great interspecies variability. To contribute to these discussions, this paper provides an updated review of the major polymer-based drug delivery systems projected for veterinary use. Traditional and innovative drug delivery systems based on polymers are presented, with an emphasis on films, microparticles, micelles, nanogels, nanoparticles, tablets, implants and hydrogel-based drug delivery systems. We discuss important concepts for the veterinarian about the mechanisms of drug release and, for the pharmacist, the advantages in the development of pharmaceutical forms for the animal population. Finally, challenges and opportunities are presented in the field of pharmaceutical dosage forms for veterinary use in response to the interests of the pharmaceutical industry.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Winner Duque Rodrigues
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Janaína Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil.
| |
Collapse
|
15
|
Abstract
The healing power of light has attracted interest for thousands of years. Scientific discoveries and technological advancements in the field have eventually led to the emergence of photodynamic therapy, which soon became a promising approach in treating a broad range of diseases. Based on the interaction between light, molecular oxygen, and various photosensitizers, photodynamic therapy represents a non-invasive, non-toxic, repeatable procedure for tumor treatment, wound healing, and pathogens inactivation. However, classic photosensitizing compounds impose limitations on their clinical applications. Aiming to overcome these drawbacks, nanotechnology came as a solution for improving targeting efficiency, release control, and solubility of traditional photosensitizers. This paper proposes a comprehensive path, starting with the photodynamic therapy mechanism, evolution over the years, integration of nanotechnology, and ending with a detailed review of the most important applications of this therapeutic approach.
Collapse
|