1
|
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, Roque-Borda CA, Polinário G, Figueroa Banda RA, Sábio RM, Chorilli M, Santos HA, Pavan FR. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater 2024; 39:106-134. [PMID: 38783925 PMCID: PMC11112550 DOI: 10.1016/j.bioactmat.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Giulia Polinário
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
2
|
Barrera-Rosales A, Rodríguez-Sanoja R, Hernández-Pando R, Moreno-Mendieta S. The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges. Microorganisms 2023; 11:1988. [PMID: 37630548 PMCID: PMC10459556 DOI: 10.3390/microorganisms11081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic or prophylactic approaches to control tuberculosis, one of the most important infectious diseases worldwide. This article reviews the progress and current state of the use of particles for the administration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric particles. In addition, we discuss the challenges and benefits of using these particulate systems to provide researchers with an overview of the most promising strategies in current preclinical trials, offering a perspective on their progress to clinical trials.
Collapse
Affiliation(s)
- Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México;
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México 14080, México
| | - Silvia Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
3
|
Lokhande AS, Panchal F, Munshi R, Madkaikar M, Malshe VC, Devarajan PV. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy. Int J Pharm 2023; 635:122729. [PMID: 36803923 DOI: 10.1016/j.ijpharm.2023.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency ∼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was ∼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Manisha Madkaikar
- Department of Paediatric Immunology and Leukemia Biology, ICMR-National Institute of Immunohaematology, KEM Hospital campus, Parel, Mumbai 400012, Maharashtra, India
| | - Vinod C Malshe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
4
|
Inclusion complexation and liposomal encapsulation of an isoniazid hydrazone derivative in cyclodextrin for pH-dependent controlled release. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27:525-544. [DOI: 10.1080/10837450.2022.2084554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadra Yaddollahi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Iran, Amol.
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutical Research laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
6
|
Jiang Z, Huang L, Zhang L, Yu Q, Lin Y, Fei H, Shen H, Huang H. A Simple and Sensitive UPLC–UV Method for Simultaneous Determination of Isoniazid, Pyrazinamide, and Rifampicin in Human Plasma and Its Application in Therapeutic Drug Monitoring. Front Mol Biosci 2022; 9:873311. [PMID: 35573738 PMCID: PMC9099412 DOI: 10.3389/fmolb.2022.873311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
As the first-line clinical drugs for tuberculosis (TB), isoniazid (INH), pyrazinamide (PZA), and rifampicin (RMP) are playing important roles for preventing the rapid spread of TB. Precise quantification of these drugs in biological samples is crucial to evaluate or improve the efficacy of advanced TB drug delivery systems, which are designed for reducing drug resistance, minimizing side effects, etc. Herein, a simple and sensitive method based on UPLC–UV was established and investigated for simultaneous quantification of PZA, INH, and RMP in human plasma and was applied to anti-TB drug therapeutic drug monitoring. The analytes were implemented on an HSS T3 C18 column at 40°C. The separation was performed with a gradient elution with methanol–acetonitrile–water (3:3:94) at 0.1 ml/min. The analysis only involved plasma with a small volume of 100 µL and a rapid one-step protein precipitation with methanol–acetonitrile (1:1). The results showed that the calibration curves for INH, PZA, and RMP were linear in a range of 0.5–20 μg/ml, 5–60 μg/ml, and 5–60 μg/ml, respectively. The intra- and inter-day precisions were both smaller than 15%, and the lower limit of quantitation (LLOQ) was identifiable and reproducible at 0.5 μg/ml for INH and 5 μg/ml for both PZA and RMP, respectively. The target drugs in plasma were stable after 21 days of storage at −80°C. The results indicated that our developed method is suitable for the simultaneous monitoring of INH, PZA, and RMP in human plasma.
Collapse
Affiliation(s)
- Zhimei Jiang
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Lingli Zhang
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Lingli Zhang, ; Qin Yu,
| | - Qin Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Institute of Drug Clinical Trial/GCP Center, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lingli Zhang, ; Qin Yu,
| | - Yunzhu Lin
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Haotian Fei
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hongxin Shen
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hong Huang
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|