1
|
Li Q, Liu W, Liu K, Dong Z, Kong W, Lu X, Wei Y, Wu W, Yang J, Qi J. The Role of Nanoparticle Morphology on Enhancing Delivery of Budesonide for Treatment of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33081-33092. [PMID: 38888094 DOI: 10.1021/acsami.4c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that affects the gastrointestinal tract. The major hurdles impeding IBD treatment are the low targeting efficiency and short retention time of drugs in IBD sites. Nanoparticles with specific shapes have demonstrated the ability to improve mucus retention and cellular uptake. Herein, mesoporous silica nanoparticles (MSNs) with various morphologies were used to deliver budesonide (BUD) for the treatment of IBD. The therapeutic efficacy is strongly dependent on their shapes. The system comprises different shapes of MSNs as carriers for budesonide (BUD), along with Eudragit S100 as the enteric release shell. The encapsulation of Eudragit S100 not only improved the stability of MSNs-BUD in the gastrointestinal tract but also conferred pH-responsive drug release properties. Then, MSNs efficiently deliver BUD to the colon site, and the special shape of MSNs plays a critical role in enhancing their permeability and retention in the mucus layer. Among them, dendritic MSNs (MSND) effectively reduced myeloperoxidase (MPO) activity and levels of inflammatory cytokines in the colon due to long retention time and rapid release in IBD sites, thereby enhancing the therapeutic efficacy against colitis. Given the special shapes of MSNs and pH-responsivity of Eudragit S100, BUD loaded in the voids of MSND (E@MSNs-BUD) could penetrate the mucous layer and be accurately delivered to the colon with minor side effects. This system is expected to complement current treatment strategies for the IBD.
Collapse
Affiliation(s)
- Qiuyu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjuan Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kaiheng Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zirong Dong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weiwen Kong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinrui Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuning Wei
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinlong Yang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Intiquilla A, Arazo M, Gamboa A, Caro N, Gotteland M, Palomino-Calderón A, Abugoch L, Tapia C. Nanoemulsions Based on Soluble Chenopodin/Alginate Complex for Colonic Delivery of Quercetin. Antioxidants (Basel) 2024; 13:658. [PMID: 38929097 PMCID: PMC11200757 DOI: 10.3390/antiox13060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder caused by uncontrolled immune activation and the subsequent destruction of the colon tissue. Quercetin (Qt) is a natural antioxidant and anti-inflammatory agent proposed as an alternative to mitigate IBD. However, its use is limited by its low oral bioavailability. This study aimed to develop nanoemulsions (NEs) based on a soluble chenopodin/alginate (QPA) complex and Tween 80 (T80), intended for the colonic release of Qt, activated by the pH (5.4) and bacteria present in the human colonic microbiota. NEs with different ratios of QPA/Tw80 (F1-F6) were prepared, where F4Qt (60/40) and F5Qt (70/30) showed sizes smaller than 260 nm, PDI < 0.27, and high encapsulation efficiency (>85%). The stability was evaluated under different conditions (time, temperature, pH, and NaCl). The DSC and FTIR analyses indicated hydrophobic and hydrogen bonding interactions between QPA and Qt. F4Qt and F5Qt showed the greater release of Qt in PBS1X and Krebs buffer at pH 5.4 (diseased condition), compared to the release at pH 7.4 (healthy condition) at 8 h of study. In the presence of E. coli and B. thetaiotaomicron, they triggered the more significant release of Qt (ƒ2 < 50) compared to the control (without bacteria). The NEs (without Qt) did not show cytotoxicity in HT-29 cells (cell viability > 80%) and increased the antioxidant capacity of encapsulated Qt. Therefore, these NEs are promising nanocarriers for the delivery of flavonoids to the colon to treat IBD.
Collapse
Affiliation(s)
- Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 15081, Peru;
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Migdalia Arazo
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 8330015, Chile;
| | - Alexander Gamboa
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile;
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8370003, Chile;
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8370003, Chile;
| | - Martin Gotteland
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8330015, Chile;
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Alan Palomino-Calderón
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Lilian Abugoch
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Cristian Tapia
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| |
Collapse
|
3
|
Huang D, Wang Y, Xu C, Zou M, Ming Y, Luo F, Xu Z, Miao Y, Wang N, Lin Z, Weng Z. Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota. Int J Biol Macromol 2024; 266:131107. [PMID: 38527677 DOI: 10.1016/j.ijbiomac.2024.131107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenlan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yangcan Ming
- Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, Hubei 430022, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ying Miao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Na Wang
- Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, Hubei 430022, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
4
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
5
|
Zhang X, Gao X, Yi X, Yu H, Shao M, Li Y, Shen X. Multi-targeting inulin-based nanoparticles with cannabidiol for effective prevention of ulcerative colitis. Mater Today Bio 2024; 25:100965. [PMID: 38318477 PMCID: PMC10839446 DOI: 10.1016/j.mtbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is closely related to severe inflammation, damaged colonic mucosal barrier, increased oxidative stress and intestinal ecological imbalance. However, due to the nonspecific distribution and poor bioavailability of drugs, UC treatment is still a serious challenge. Here, a mitochondria/colon dual targeted nanoparticles based on redox response was developed to effectively alleviate UC. Cannabidiol nanoparticles (CBD NPs) with a particle size of 143.2 ± 3.11 nm were prepared by self-assembly using polymers (TPP-IN-LA) obtained by modifying inulin with (5-carboxypentyl) triphenyl phosphonium bromide (TPP) and α-lipoic acid (α-LA). Excitingly, the constructed CBD NPs showed excellent mitochondrial targeting, with a Pearson correlation coefficient of 0.76 at 12 h. The results of animal imaging in vivo showed that CBD NPs could be effectively accumulated in colon tissue. Not only that, CBD showed significant glutathione stimulated release in the presence of 10 mM glutathione at pH 7.4. The results of in vivo animal experiments showed that CBD NPs significantly ameliorated DSS-induced colonic inflammation by modulating the TLR4-NF-κB signaling pathway. Moreover, CBD NPs significantly improved the histological damage of colon in UC mice, increased the expression level of tight junction protein ZO-1, and effectively restored the intestinal mucosal barrier function and intestinal mucosal permeability. More importantly, CBD NPs significantly improved the species composition, abundance and amount of short chain fatty acids of intestinal flora in UC mice, thus effectively maintaining the balance of intestinal flora. The dual-targeted and glutathione-responsive nanoparticles prepared in this study provide a promising idea for achieving targeted delivery of CBD for effective treatment of UC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xia Gao
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiangzhou Yi
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Yu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingyang Shao
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xuanri Shen
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
6
|
Tang Z, Luo J, Faqir Y, Zhang Y, Xue W, Zhao H, Jakhar AM, Tan C, Ma J. Berberine hydrochloride-loaded dung beetle chitosan/sodium alginate microspheres ameliorate DSS-induced colitis and regulate gut microorganisms in mice. Int J Biol Macromol 2024; 255:128219. [PMID: 37981270 DOI: 10.1016/j.ijbiomac.2023.128219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Berberine hydrochloride (BH) has long been known for its therapeutic efficacy. In the present study, we aimed to treat mice with colitis using dung beetle chitosan (DCS) -transported BH. To achieve this, BH-loaded DCS/sodium alginate microspheres (SA-DCS-BH) were prepared. The SA-DCS-BH was characterized using SEM, DLS, FT-IR, and XRD, then was used for administration and anti-inflammatory examination in mice. SEM and DLS confirmed the surface morphology of the microspheres, and the particle size was relatively uniform. FT-IR and XRD results confirmed that BH was successfully loaded. In vitro and in vivo studies showed that SA-DCS-BH had slow-release ability. After treatment with SA-DCS-BH, DAI was significantly reduced, colon weight and length increased, spleen length and weight reduced, concentrations of pro-inflammatory cytokines in colonic tissues were reduced, and gut microbiota species abundance was modulated. In addition, this study found a correlation between specific microbes and colitis indicators, Muribaculaceae showed sequential growth after receiving BH, SA-CS-BH, and SA-DCS-BH treatments, respectively. It was concluded that SA-DCS-BH effectively delivered the BH to the intestine with slow-release ability and exhibited anti-inflammatory effects by immune response. Compared to commercial chitosan, DCS has potential for modulating intestinal microorganisms and more suitable carrier for intestinal drug delivery systems.
Collapse
Affiliation(s)
- Zhaoxia Tang
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiali Luo
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yahya Faqir
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu Zhang
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenqian Xue
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hongmei Zhao
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ali Murad Jakhar
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Jiahua Ma
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
7
|
Ardekani ZM, Lorenzo-Leal AL, Bach H. Nanomedicine-mediated drug delivery for potential treatment of inflammatory bowel disease: a narrative review. Nanomedicine (Lond) 2024; 19:163-179. [PMID: 38284393 DOI: 10.2217/nnm-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Background & aims: Inflammatory bowel disease (IBD) is a condition characterized by chronic inflammation of the gastrointestinal tract, manifesting as either Crohn's disease (CrD) or ulcerative colitis (UC). Current treatment options for CrD and UC primarily focus on symptom management. In recent years, advancements in nanotechnology have increased the clinical applicability of nanoparticles (NPs) in treating IBD. This review explores the current research on NP-mediated drug-delivery systems for IBD treatment and assesses its advantages and limitations. Results: The authors examine diverse nanomedicine applications for IBD and address the current challenges and prospects in the field to advance nanomediated therapies in the future. Conclusion: Innovative NP-based treatment strategies promise a reliable and effective approach to IBD management.
Collapse
Affiliation(s)
- Zhina Majdzadeh Ardekani
- University of British Columbia, Faculty of Medicine, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Ana L Lorenzo-Leal
- University of British Columbia, Faculty of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Horacio Bach
- University of British Columbia, Faculty of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| |
Collapse
|
8
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
Hu S, Zhao R, Xu Y, Gu Z, Zhu B, Hu J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. J Mater Chem B 2023; 12:13-38. [PMID: 38018424 DOI: 10.1039/d3tb02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
10
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Treatment with butyrate alleviates dextran sulfate sodium and Clostridium difficile-induced colitis by preventing activity of Th17 cells via regulation of SIRT1/mTOR in mice. J Nutr Biochem 2023; 111:109155. [PMID: 36162566 DOI: 10.1016/j.jnutbio.2022.109155] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/23/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Inflammatory bowel disease (IBD) patients are particularly vulnerable to infection with Clostridium difficile infection (CDI).Available treatments of IBD with CDI have not effective. Butyrate, the metabolites of microbiota, plays a vital role in maintaining immune homeostasis and potential drugs for treatment of IBD with CDI. The aim of this study was to investigate the effect of butyrate on IBD with CDI. Mice were given dextran sulfate sodium (DSS) and were infected with C. difficile (CD). Butyrate was treated during the study period. Butyrate protected from DSS+CD induced colitis by improving weight loss, survival, colon shorten, activity index score, and suppressing the expression of proinflammatory cytokines including IL-6, IL-17, TNF-α, IL-1β as well as regulating Th17/Treg balance through activation of SIRT1/mTOR. Besides, SR1001, an inhitor of the orphan nuclear receptors retinoic acid-related receptor γt, which is a transcription factor specific to the formation of Th17 cells can suppress the Th17 development and alleviate the DSS+CD induced colitis in mice. Notably, the therapeutic effect of butyrate was revered when disease mice treated with butyrate and Ex-527, a SIRT1 inhibitor. Taken together, we demonstrate that butyrate alleviates dextran sulfate sodium and clostridium difficile induced colitis by preventing Th17 through activation of SIRT1/mTOR.
Collapse
|
12
|
Xu R, Weber MC, Hu X, Neumann PA, Kamaly N. Annexin A1 based inflammation resolving mediators and nanomedicines for inflammatory bowel disease therapy. Semin Immunol 2022; 61-64:101664. [PMID: 36306664 DOI: 10.1016/j.smim.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic, progressive, and relapsing disorders of the gastrointestinal tract (GIT), characterised by intestinal epithelial injury and inflammation. Current research shows that in addition to traditional anti-inflammatory therapy, resolution of inflammation and repair of the epithelial barrier are key biological requirements in combating IBD. Resolution mediators include endogenous lipids that are generated during inflammation, e.g., lipoxins, resolvins, protectins, maresins; and proteins such as Annexin A1 (ANXA1). Nanoparticles can specifically deliver these potent inflammation resolving mediators in a spatiotemporal manner to IBD lesions, effectively resolve inflammation, and promote a return to homoeostasis with minimal collateral damage. We discuss these exciting and timely concepts in this review.
Collapse
Affiliation(s)
- Runxin Xu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Marie-Christin Weber
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany
| | - Xinkai Hu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Philipp-Alexander Neumann
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany.
| | - Nazila Kamaly
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom.
| |
Collapse
|
13
|
Yan M, Zhu L, Wu S, Cao Y, Mou N, Chi Q, Wang G, Zhong Y, Wu W. ROS responsive polydopamine nanoparticles to relieve oxidative stress and inflammation for ameliorating acute inflammatory bowel. BIOMATERIALS ADVANCES 2022; 142:213126. [PMID: 36191534 DOI: 10.1016/j.bioadv.2022.213126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/11/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Oxidative stress is a key factor in the development of inflammatory diseases. Elimination of reactive oxygen species (ROS) in the inflamed colon has been confirmed as an effective strategy to alleviate inflammatory bowel disease (IBD). The conventional approaches will cause systemic absorption and potential side effects. To address these issues, we develop a nanomedicine (LS@PDA NPs) that is capable of delivering to target inflammatory lesions by electrostatic adsorption, subsequently effectively scavenging the excess ROS and alleviating inflammation to ameliorate ulcerative colitis (UC). In the DSS induced acute colitis mice model, LS@PDA NPs can significantly reduce the production of pro-inflammatory cytokines, alleviate oxidative stress, and promote the favorable recovery of the damaged colonic tissue. These results indicate that LS@PDA NPs are able to effectively alleviate intestinal inflammation and provide strong theoretical support for the treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China; Jin Feng Laboratory, Chongqing, 401329, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China; Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
14
|
Zhang J, Ou A, Tang X, Wang R, Fan Y, Fang Y, Zhao Y, Zhao P, Chen D, Wang B, Huang Y. "Two-birds-one-stone" colon-targeted nanomedicine treats ulcerative colitis via remodeling immune microenvironment and anti-fibrosis. J Nanobiotechnology 2022; 20:389. [PMID: 36042499 PMCID: PMC9429315 DOI: 10.1186/s12951-022-01598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dysregulated mucosal immune responses and colonic fibrosis impose two formidable challenges for ulcerative colitis treatment. It indicates that monotherapy could not sufficiently deal with this complicated disease and combination therapy may provide a potential solution. A chitosan-modified poly(lactic-co-glycolic acid) nanoparticle (CS-PLGA NP) system was developed for co-delivering patchouli alcohol and simvastatin to the inflamed colonic epithelium to alleviate the symptoms of ulcerative colitis via remodeling immune microenvironment and anti-fibrosis, a so-called “two-birds-one-stone” nanotherapeutic strategy. The bioadhesive nanomedicine enhanced the intestinal epithelial cell uptake efficiency and improved the drug stability in the gastrointestinal tract. The nanomedicine effectively regulated the Akt/MAPK/NF-κB pathway and reshaped the immune microenvironment through repolarizing M2Φ, promoting regulatory T cells and G-MDSC, suppressing neutrophil and inflammatory monocyte infiltration, as well as inhibiting dendritic cell maturation. Additionally, the nanomedicine alleviated colonic fibrosis. Our work elucidates that the colon-targeted codelivery for combination therapy is promising for ulcerative colitis treatment and to address the unmet medical need.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 501450, China
| | - Rong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Yujuan Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China
| | - Yuge Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongying Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Wang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China. .,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China.
| |
Collapse
|
15
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Big Data Analysis of Manufacturing and Preclinical Studies of Nanodrug-Targeted Delivery Systems: A Literature Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1231446. [PMID: 35941977 PMCID: PMC9356884 DOI: 10.1155/2022/1231446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Objective Nanodelivery is a modern technology involving improved delivery methods and drug formulations. The current development and initial applications of nanocarriers are pointing to new directions in the current development of nanomedicine. Researchers are increasingly applying nanodelivery to the delivery of therapeutic or diagnostic agents. This article discusses the preparation and application of nanocomplexes and nanoparticles, as well as their potential future value in clinical research. Through a review and analysis, it is hoped that this will serve as a guide for the future development of various nanodelivery technologies and help researchers learn more about these technologies. Materials and Methods A literature search was conducted using the keywords “Nano drug delivery” or “Nanomedical materials” or “Nano”. A literature search was conducted in three major databases, PubMed, Web of Science, and Google Scholar, using the keywords such as “Nano drug delivery”, “Nanomedical materials”, or “Nanobubble drug delivery”. The initial search was screened by title and abstract. In the full-text review, the titles or abstracts were reviewed according to the selection criteria based on the inclusion criteria. The risk of bias and study quality was assessed according to the Cochrane guidelines, and possible biases such as selection bias and good selection bias were included in the review. Results A total of 297 studies were included in this study, of which 219 were excluded based on the screening criteria, resulting in the inclusion of 78 studies, the majority of which were original studies and clinical trials, and a small number of which provided design and route of administration analysis of nanomaterial particles and effect fluorograms and were studied in more depth. This paper summarises and reviews the views and directions of the included articles. The main directions include cyclodextrin-based or grafted cyclodextrin nanomaterials, nanobubbles, and stimuli-sensitive and temperature-sensitive nanodelivery systems. Conclusion The use of innovative, targeted drug delivery systems is effective in cancer drug delivery by summarising the previous studies. However, nanodelivery systems' risks and therapeutic effects need to be evaluated before clinical application. Future research in the field of targeted drug delivery nanosystems should focus on the development of nanocarriers with high in vivo delivery capacity, good synergy with therapeutic agents, and milder short-term and long-term toxicological effects and conduct comprehensive preclinical trials on nanodrug delivery systems with high potential for clinical application as soon as possible, to find nanodrug delivery systems suitable for clinical use and put them into the clinical application as soon as possible.
Collapse
|
17
|
Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 2022; 349:184-205. [PMID: 35798093 DOI: 10.1016/j.jconrel.2022.06.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
Gut microbes are closely associated with most human health. When ingested orally, probiotics can effectively regulate the composition and quantity of human intestinal microorganisms, which is beneficial to human health. However, probiotics will be affected by the harsh environment of the digestive tract during the in vivo transportation process, and ensuring the viability of probiotics is a great challenge. Probiotic encapsulating technology provides an effective solution to this problem. The introduction of extreme temperatures, large probiotic microcapsule sizes and the difficulty in controlling probiotic microcapsule particle sizes mean that traditional microcapsule encapsulation methods have some limitations. From traditional microcapsule technology to the bulk encapsulation of probiotics with nanofibers and nanoparticles to the recent ability to wear nano "armor" for a single probiotic through biofilm, biological membrane and nanocoating. Emerging probiotic nanoagents provides a new conceptual and development direction for the field of probiotic encapsulation. In this review, we presented the characteristics of encapsulated probiotic carrier materials and digestive tract transport systems, we focused on the encapsulation systems of probiotic nanoagents, we analyzed the shortcomings and advantages of the current agent encapsulation systems, and we stated the developmental direction and challenges for these agents for the future.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
18
|
Sun M, Ban W, Ling H, Yu X, He Z, Jiang Q, Sun J. Emerging nanomedicine and prodrug delivery strategies for the treatment of inflammatory bowel disease. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Yang W, Zhao P, Li X, Guo L, Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr Polym 2022; 277:118821. [PMID: 34893238 DOI: 10.1016/j.carbpol.2021.118821] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-term chronic disease, about 20% of IBD patients deteriorate to colorectal cancer. Currently, there is no radical cure for IBD. Natural plant polysaccharides (NPP) have low toxic and side effects, which have immune and prebiotic activities and possesses positive effect on alleviating IBD. In this review, we will focus on the alleviating effect of NPP on IBD in vitro and in vivo from three aspects: regulating intestinal flora imbalance, repairing intestinal barrier injury and improving immunity. The relationship between the chemical structure of natural plant polysaccharides and the therapeutic effect of IBD are highlighted. Finally, the synergistic role of NPP as a carrier of drugs or active molecules to reduce side effects and enhance targeting function are discussed, especially pectic polysaccharides. Broadly, this review provides a valuable reference for NPP to be developed as functional food or health products to alleviate IBD.
Collapse
Affiliation(s)
- Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
20
|
Oral Administration of Cryptotanshinone-Encapsulated Nanoparticles for the Amelioration of Ulcerative Colitis. Cell Mol Bioeng 2021; 15:129-136. [DOI: 10.1007/s12195-021-00711-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
|
21
|
Antunes JC, Seabra CL, Domingues JM, Teixeira MO, Nunes C, Costa-Lima SA, Homem NC, Reis S, Amorim MTP, Felgueiras HP. Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. NANOMATERIALS 2021; 11:nano11082035. [PMID: 34443866 PMCID: PMC8401460 DOI: 10.3390/nano11082035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of disabling, destructive and incurable immune-mediated inflammatory diseases comprising Crohn’s disease (CD) and ulcerative colitis (UC), disorders that are highly prevalent worldwide and demand a large investment in healthcare. A persistent inflammatory state enables the dysfunction and destruction of healthy tissue, hindering the initiation and endurance of wound healing. Current treatments are ineffective at counteracting disease progression. Further, increased risk of serious side effects, other comorbidities and/or opportunistic infections highlight the need for effective treatment options. Gut microbiota, the key to preserving a healthy state, may, alternatively, increase a patient’s susceptibility to IBD onset and development given a relevant bacterial dysbiosis. Hence, the main goal of this review is to showcase the main conventional and emerging therapies for IBD, including microbiota-inspired untargeted and targeted approaches (such as phage therapy) to infection control. Special recognition is given to existing targeted strategies with biologics (via monoclonal antibodies, small molecules and nucleic acids) and stimuli-responsive (pH-, enzyme- and reactive oxygen species-triggered release), polymer-based nanomedicine that is specifically directed towards the regulation of inflammation overload (with some nanosystems additionally functionalized with carbohydrates or peptides directed towards M1-macrophages). The overall goal is to restore gut balance and decrease IBD’s societal impact.
Collapse
Affiliation(s)
- Joana Costa Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
- Correspondence: ; Tel.: +351-253-510-289
| | - Catarina Leal Seabra
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Joana Margarida Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Marta Oliveira Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Cláudia Nunes
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Sofia Antunes Costa-Lima
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Natália Cândido Homem
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Salette Reis
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Maria Teresa Pessoa Amorim
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Helena Prado Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| |
Collapse
|