1
|
Hu CY, Yin YF, Xu DP, Xu Y, Yang JY, Xu YN, Hua R. Construction and validation of immunogenic cell death-related molecular clusters, signature, and immune landscape in pancreatic cancer. Clin Exp Med 2024; 25:19. [PMID: 39708151 DOI: 10.1007/s10238-024-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer (PC) is a malignancy of the gastrointestinal tract that is characterized by a poor prognosis. This study investigates the roles of immunogenic cell death (ICD) genes in the prognosis and progression of PC. Expression data for PC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, while ICD genes were sourced from published literature. We explored the expression patterns and identified two distinct clusters based on ICD genes. Kaplan-Meier analysis, differential expression analysis, tumor mutational burden analysis, and immune cell infiltration analysis were performed on these clusters. An ICD gene-based risk model was developed, categorizing samples from the TCGA and GEO datasets into low- and high-risk groups. Additionally, we investigated the expression levels of the genes included in the risk model within the TCGA cohort and our own samples. Finally, a loss-of-function assay was conducted to assess the role of MYD88 in PC. Two clusters of PC samples were identified, patients in the ICD-low cluster exhibited a higher degree of immune cell enrichment. The survival time of patients in the low-risk group was longer than that of those in the high-risk group. The genes included in the risk model (CASP1, MYD88, and PIK3CA) showed upregulated expression levels in tumor samples. Furthermore, the predictive accuracy of our risk model was validated using our own samples. Genetic inhibition of MYD88 led to significantly decreased proliferation and migration of PC cells in the loss-of-function assay. There were disparities in survival time and tumor immune microenvironment (TIME) between two ICD gene clusters. Additionally, we developed an ICD-related risk model that was validated as an independent prognostic indicator for patients with PC.
Collapse
Affiliation(s)
- Cheng-Yu Hu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yi-Fan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Da-Peng Xu
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China.
| | - Yu Xu
- Department of Hepatopancreatobiliary Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yan-Nan Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
2
|
Pan X, Han T, Zhao Z, Wang X, Fang X. Emerging Nanotechnology in Preclinical Pancreatic Cancer Immunotherapy: Driving Towards Clinical Applications. Int J Nanomedicine 2024; 19:6619-6641. [PMID: 38975321 PMCID: PMC11227336 DOI: 10.2147/ijn.s466459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Ting Han
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Zixuan Zhao
- The Translational Research Institute for Neurological Disorders of Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xiaoming Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Xiaosan Fang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| |
Collapse
|
3
|
Chintamaneni PK, Pindiprolu SKSS, Swain SS, Karri VVSR, Nesamony J, Chelliah S, Bhaskaran M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett 2024; 588:216782. [PMID: 38453046 DOI: 10.1016/j.canlet.2024.216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | | | - Swati Swagatika Swain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
4
|
Yu H, Zhang X, Li J, Wang K, Yin C, Li X, Li L, Shao G, Jin S. Design, Synthesis and Evaluation of a Novel Teoptinib Derivative as an Effective Anti-hepatocellular Carcinoma Agent. Curr Pharm Des 2024; 30:2167-2178. [PMID: 38919077 DOI: 10.2174/0113816128314500240621071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND & PURPOSE Hepatocellular Carcinoma (HCC) is a type of liver cancer known for its poor prognosis and high mortality. Teoptinib is a highly selective MET inhibitor that has been used in the treatment of liver cancer. Although good progress has been made in clinical treatment, further improvement is still needed. In this study, a series of novel Teoptinib derivatives were synthesized and evaluated as anti-cancer agents for the treatment of liver cancer, and an oral nanodrug delivery system was also explored. METHODS A series of novel Teoptinib derivatives were synthesized, and an oral nanodrug delivery system was also explored. HPLC, high-resolution mass spectrometer and NMR were used to determine the structure and molecular formula of the synthesized compounds. Zeta potential assay was used to access the particle size distribution and zeta potential of the nanoparticles. MTT assay, cell colony formation assay, cell apoptosis inhibition assay, cell scratch assay, and the MHCC-97H xenograft model of nude mice assay were used to evaluate the in vitro and in vivo anti-tumor activity of the synthesized compounds. RESULTS Compound (R)-10 showed the best antitumor activity with 0.010 μM of the IC50 value against MHCC-97H, a human liver cancer cell line with high c-Met expression. The MHCC-97H xenograft model of nude mice assay showed that nano-prodrug of compound (R)-10 exhibited good in vivo activity with 87.67% of the TGI at the dosage of 8 mg/kg. CONCLUSION We designed and synthesized a series of c-Met inhibitors containing different side chains and chiral centers as anti-liver cancer agents. Among them, compound (R)-10 shows a promising effect as a lead molecule for further study in the treatment of liver cancer. The successful incorporation of (R)-10 into a novel oral nanodrug delivery system highlights the importance of effective drug delivery systems for enhanced therapeutic efficacy.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Drug Design
- Mice
- Mice, Nude
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Structure-Activity Relationship
- Molecular Structure
- Dose-Response Relationship, Drug
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/metabolism
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Mice, Inbred BALB C
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Cell Line, Tumor
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Huijuan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510275, China
| | - Xiaodong Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiayu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510275, China
| | - Kaimei Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Changjun Yin
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinshu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianyun Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guang Shao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
5
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Yuan W, Lang T, Li Y, Yin Q. Co-delivering irinotecan and imiquimod by pH-responsive micelle amplifies anti-tumor immunity against colorectal cancer. Int J Pharm 2023; 648:123583. [PMID: 37940081 DOI: 10.1016/j.ijpharm.2023.123583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Irinotecan (IRT), a classic clinical chemotherapeutic agent for treating colorectal cancer, has been found to induce immunogenic cell death (ICD) while exerting cytotoxicity in tumor cells. This effect is likely to be amplified in combination with immune modulators. Unfortunately, free drugs without targeting capacity would receive poor outcomes and strong side effects. To address these issues, in this work, an acid-sensitive micelle based on an amphiphilic poly(β-amino ester) derivative was constructed to co-deliver IRT and the immune adjuvant imiquimod (IMQ), termed PII. PII kept stable under normal physiological conditions. After internalization by tumor cells, PII dissociated in acidic lysosomes and released IRT and IMQ rapidly. In the CT26 tumor mouse model, PII increased the intra-tumoral SN38 (the active metabolite of IRT) and IMQ concentrations by up to 9.39 and 3.44 times compared with the free drug solution. The tumor inhibition rate of PII achieved 87.29%. This might profit from that IRT induced ICD, which promoted dendritic cells (DCs) maturation and intra-tumoral infiltration of CD8+ T cells. In addition, IMQ enhanced the antigen presenting ability of DCs and stimulated tumor associated macrophages to secrete tumor-killing cytokines. PII provided an effective strategy to combat colorectal cancer by synergy of chemotherapy and immunoregulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China; Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Peng W, Yang J, Xia L, Qian X, Long G, Zhang H, Xie J, Zhao J, Zhang L, Pan W. Immunogenic cell death-associated biomarkers classification predicts prognosis and immunotherapy efficacy in pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1178966. [PMID: 37064149 PMCID: PMC10098015 DOI: 10.3389/fonc.2023.1178966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Immunogenic cell death (ICD) is a sort of regulated cell death (RCD) sufficient to trigger an adaptive immunological response. According to the current findings, ICD has the capacity to alter the tumor immune microenvironment by generating danger signals or damage-associated molecular patterns (DAMPs), which may contribute in immunotherapy. It would be beneficial to develop ICD-related biomarkers that classify individuals depending on how well they respond to ICD immunotherapy. Methods and results We used consensus clustering to identify two ICD-related groupings. The ICD-high subtype was associated with favorable clinical outcomes, significant immune cell infiltration, and powerful immune response signaling activity. In addition, we developed and validated an ICD-related prognostic model for PDAC survival based on the tumor immune microenvironment. We also collected clinical and pathological data from 48 patients with PDAC, and patients with high EIF2A expression had a poor prognosis. Finally, based on ICD signatures, we developed a novel PDAC categorization method. This categorization had significant clinical implications for determining prognosis and immunotherapy. Conclusion Our work emphasizes the connections between ICD subtype variations and alterations in the immune tumor microenvironment in PDAC. These findings may help the immune therapy-based therapies for patients with PDAC. We also created and validated an ICD-related prognostic signature, which had a substantial impact on estimating patients' overall survival times (OS).
Collapse
Affiliation(s)
- Wenguang Peng
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiarui Yang
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Long Xia
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Xiangjun Qian
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guojie Long
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiancong Xie
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junzhang Zhao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Zhang
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weidong Pan
- Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Kikuyama F, Suzuki S, Jibiki A, Yokoyama Y, Kawazoe H, Kitanaka S, Nakamura T. Ingenol mebutate inhibits the growth of pancreatic cancer cells in vitro via STING with an efficacy comparable to that of clinically used anticancer agents. J Nat Med 2023; 77:343-351. [PMID: 36694038 DOI: 10.1007/s11418-023-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Pancreatic cancer is associated with a poor prognosis; thus, there is an urgent need to develop new and effective treatments. Ingenol mebutate (IM), which is isolated from the latex of Euphorbia peplus, was recently shown to be effective against pancreatic cancer cell lines; however, its mechanism of action has not been fully elucidated. In this study, we focused on the less drug-sensitive pancreatic cancer cell line Panc-1 and compared IM to commercially available anticancer drugs using cell survival assays. In addition, we aimed to identify novel biomolecules that may be involved in the mechanism of action of IM using RNA sequencing, western blotting, and inhibition assays. The IC50 values after 72 h of exposure to IM and SN-38, drugs to which the Panc-1 cells are most sensitive among the tested anticancer agents, were 43.1 ± 16.8 nM and 165 ± 37 nM, respectively. IM showed a cytostatic effect equal to or greater than that of the clinically used pancreatic cancer therapeutic drugs. RNA sequencing and protein expression analysis revealed that expression of stimulator of interferon genes (STING) increased at low IM concentration, whereas cell viability decreased. Co-exposure of IM and STING inhibitor, H-151, to Panc-1 or MIA PaCa-2 cell lines canceled the growth-inhibitory effects of IM alone. In conclusion, IM may have an efficacy comparable to that of existing pancreatic cancer therapeutic agents on the less drug-sensitive Panc-1 cell line and the immune-related molecule STING plays a role in the mechanism of action of IM.
Collapse
Affiliation(s)
- Fumihiro Kikuyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Sayo Suzuki
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
| | - Aya Jibiki
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Yuta Yokoyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Hitoshi Kawazoe
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Susumu Kitanaka
- Dios Medical Science Institute, 4-3-21 Mimomi, Narashino, Chiba, 275-0002, Japan
| | - Tomonori Nakamura
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| |
Collapse
|
8
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
9
|
Engineered nanomedicines to overcome resistance of pancreatic cancer to immunotherapy. Drug Discov Today 2023; 28:103434. [PMID: 36368630 DOI: 10.1016/j.drudis.2022.103434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer (PC) is a highly aggressive malignant type of cancer. Although immunotherapy has been successfully used for treatment of many cancer types, many challenges limit its success in PC. Therefore, nanomedicines were engineered to enhance the responsiveness of PC cells to immune checkpoint inhibitors (ICIs). In this review, we highlight recent advances in engineering nanomedicines to overcome PC immune resistance. Nanomedicines were used to increase the immunogenicity of PC cells, inactivate stromal cancer-associated fibroblasts (CAFs), enhance the antigen-presenting capacity of dendritic cells (DCs), reverse the highly immunosuppressive nature of the tumor microenvironment (TME), and, hence, improve the infiltration of cytotoxic T lymphocytes (CTLs), resulting in efficient antitumor immune responses.
Collapse
|
10
|
FU-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Kutoka PT, Seidu TA, Baye V, Khamis AM, Omonova CTQ, Wang B. Current nano-strategies to target tumor microenvironment (TME) to improve anti-tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hsieh YY, Cheng YW, Wei PL, Yang PM. Repurposing of ingenol mebutate for treating human colorectal cancer by targeting S100 calcium-binding protein A4 (S100A4). Toxicol Appl Pharmacol 2022; 449:116134. [PMID: 35724704 DOI: 10.1016/j.taap.2022.116134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is the world's second most common cause of cancer-related death. Novel treatments are still urgently needed. S100 calcium-binding protein A4 (S100A4) was demonstrated to be an anticancer therapeutic target. Herein, we found that higher S100A4 expression was associated with a poorer prognosis in publicly available cohorts and a Taiwanese CRC patient cohort. To identify repurposed S100A4 inhibitors, we mined the Connectivity Map (CMap) database for clinical drugs mimicking the S100A4-knockdown gene signature. Ingenol mebutate, derived from the sap of the plant Euphorbia peplus, is approved as a topical treatment for actinic keratosis. The CMap analysis predicted ingenol mebutate as a potent S100A4 inhibitor. Indeed, both messenger RNA and protein levels of S100A4 were attenuated by ingenol mebutate in human CRC cells. In addition, CRC cells with higher S100A4 expressions and/or the wild-type p53 gene were more sensitive to ingenol mebutate, and their migration and invasion were inhibited by ingenol mebutate. Therefore, our results suggest the repurposing of ingenol mebutate for treating CRC by targeting S100A4.
Collapse
Affiliation(s)
- Yao-Yu Hsieh
- Division of Hematology and Oncology, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Wen Cheng
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of R&D, Calgent Biotechnology Co., Ltd., Taipei 10675, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
13
|
Wang Z, Sun C, Wu H, Xie J, Zhang T, Li Y, Xu X, Wang P, Wang C. Cascade targeting codelivery of ingenol-3-angelate and doxorubicin for enhancing cancer chemoimmunotherapy through synergistic effects in prostate cancer. Mater Today Bio 2022; 13:100189. [PMID: 34977528 PMCID: PMC8686035 DOI: 10.1016/j.mtbio.2021.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/02/2022] Open
Abstract
Immunotherapy has led to an expansion of the treatment of malignancies, but its effect in prostate cancer (PCa) patients is modest. Chemoimmunotherapy is a promising approach that has attracted substantial attention. Although the widely used clinical chemotherapeutic drug doxorubicin (DOX) elicits immunogenic cell death (ICD), its weak ICD effect and the abnormal vasculature of tumors severely limit its efficacy in chemoimmunotherapy. Ingenol-3-angelate (I3A), an emerging antitumor drug with dual chemotherapeutic and immune response-eliciting effects, is expected to exert synergistic effects when administered in combination with DOX. I3A induces the ICD of PCa cells by triggering mitophagy and apoptosis and promotes the normalization of tumor vessels, resulting in sufficient infiltration of immune cells into tumors. A synergistic effect of I3A and DOX was observed in vitro at a molar ratio of 1:4. To codeliver this ratio of I3A and DOX to tumor and ensure their uptake, we designed a dual-targeting delivery system, polylactide-poly(ethylene) glycol-2-(3-((S)-5-amino-1-carboxypentyl)-ureido) pentanedioate/triphenylphosphonium (PLA-PEG-ACUPA/TPP), which targets prostate-specific membrane antigen (PSMA) and mitochondria. Delivery of these nanomedicines led to inhibited tumor growth and a strong antitumor immune response. This study sheds light on the mitophagic and antiangiogenic mechanisms underlying I3A treatment of PCa and provides a strategy for combining vascular normalization and chemoimmunotherapy for PCa treatment.
Collapse
Affiliation(s)
- Zhicheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Ji'nan, 250033, PR China
| | - Haijun Wu
- Shandong Center for Food and Drug Evaluation and Inspection, Ji'nan, 250013, PR China
| | - Jizhen Xie
- Shandong Center for Food and Drug Evaluation and Inspection, Ji'nan, 250013, PR China
| | - Tong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Yumin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Xuelian Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Peilin Wang
- Department of General Surgery, The Second Hospital of Shandong University, Ji'nan, 250033, PR China
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| |
Collapse
|