1
|
Lawal I, de Castro Araujo Valente D, Khusnatdinov E, Elliott B, Carruth B, Penttila C, Marston J. Effect of orientation angle for needle-free jet injection. Int J Pharm 2024; 664:124612. [PMID: 39179006 DOI: 10.1016/j.ijpharm.2024.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
In this paper, we report on the delivery efficiency of needle-free jet injections using injectors with typical jet speed vj≈140m/s, orifice diameter do=157μm, and volume V=0.1 mL. The target substrates were either hydrogel tissue phantoms or porcine tissues combined with excised human skin. The novelty of this study is two-fold: First, we investigate the influence of injection angle relative to the skin surface, and second, we also study the influence of the jet path relative to the orientation of muscle fibers. While most commercial jet injectors employ a fitting that would render the device normal to the skin surface, recent studies have proposed oblique injections, which may be beneficial for intradermal or subcutaneous tissue injection. Furthermore, for deeper intramuscular injections, we propose that an angled jet path taking the muscle fiber orientation into account may result in a bolus or dispersion zone that is conducive to increased cellular uptake of the drug.
Collapse
Affiliation(s)
- Idera Lawal
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | | | - Emil Khusnatdinov
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Brian Elliott
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Breanna Carruth
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Clayton Penttila
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
2
|
Li H, Shi Y, Ding X, Zhen C, Lin G, Wang F, Tang B, Li X. Recent advances in transdermal insulin delivery technology: A review. Int J Biol Macromol 2024; 274:133452. [PMID: 38942414 DOI: 10.1016/j.ijbiomac.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Collapse
Affiliation(s)
- Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Jaju KK, Nasim I, Choudhari S, Sandeep A H. Comparative Evaluation of the Anesthetic Efficacy of Needle-Free Anesthesia and Conventional Anesthesia in Patients With Symptomatic Irreversible Pulpitis: A Randomized Clinical Trial. Cureus 2024; 16:e54661. [PMID: 38524054 PMCID: PMC10960589 DOI: 10.7759/cureus.54661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Pain is the primary reason for which most of the patients seek endodontic treatment. Local anesthesia is considered to be the most important step in the procedure to reduce the pain. However, the majority of the patients do not cooperate due to the fear of syringe anesthesia. The aim of this clinical trial was to compare the anesthetic efficacy of needle-free anesthesia and conventional anesthesia in patients with symptomatic irreversible pulpitis undergoing root canal therapy. Materials and methods A total of 54 patients were enrolled in the study, and the treatment was administered by a single operator. The initial assessment of vitality included cold testing, heat testing, and electric pulp testing. Preoperative pain was assessed using the Visual Analog Scale (VAS) before the administration of anesthesia. Local anesthesia was administered according to the group assigned: Group 1 (conventional anesthesia) and Group 2 (needle-free anesthesia). The pain was assessed during the administration of anesthesia. Following the administration of anesthesia, the vitality of the tooth was evaluated using cold testing, heat testing, and electric pulp testing. Subsequently, the tooth was isolated with a rubber dam, and the access cavity was prepared. The pain was assessed during access cavity preparation and during the first file insertion. Working length was determined using an apex locator (Root ZX Mini, J Morita, Saitama, Japan) and was confirmed using intraoral periapical radiographs. Later on, further treatment was carried out. Results A total of 54 participants were included in this clinical trial. There was no significant difference in mean age distribution between the two groups (p=0.852). Considering the frequency distribution of gender, there was no significant difference; however, Group 1 had more female participants (59.3%) compared to Group 2 (33.3%). There was a significant reduction in the mean pain score in Group 2 compared to Group 1 during the delivery of anesthetic agents (p=0.000). Conclusion Needle-free anesthesia proves to be equally effective as the conventional syringe system in patients experiencing symptomatic irreversible pulpitis undergoing root canal treatment. However, it is noteworthy that patients exhibited greater comfort levels with needle-free anesthesia systems specifically during the administration of the anesthetic solution.
Collapse
Affiliation(s)
- Krishna Kanth Jaju
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Iffat Nasim
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Sahil Choudhari
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Hima Sandeep A
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
5
|
Brunton PA, McLean M, Vedagiri S, McKeage J, Ruddy B, Weatherly K, White D, Taberner A, Loch C. Jet injection needle-free dental anaesthesia: Initial findings. J Dent 2022; 122:104165. [DOI: 10.1016/j.jdent.2022.104165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
|
6
|
Gao Q, Henley A, Noël G, Der Khatchadourian Z, Taqi D, Abusamak M, He Z, Grœn S, Taher R, Menassa K, Velly A, Emami E, Mongeau L, Tamimi F. Needle-free Mental Incisive Nerve Block:In vitro, Cadaveric, and Pilot Clinical Studies. Int J Pharm 2021; 609:121197. [PMID: 34666143 DOI: 10.1016/j.ijpharm.2021.121197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022]
Abstract
The present study aimed to optimize Needle-Free Liquid Jet Injection (NFLJI) for Mental Incisive Nerve Blocks (MINB) and evaluate its clinical safety and feasibility. A MINB protocol was developed and optimized by series of NFLJI experiments in soft tissue phantoms and cadavers, then validated in two pilot Randomized Controlled Trials (RCT). The NFLJI penetration depth was found to be directly proportional to the supply pressure and volume. High-pressure NFLJIs (620 kPa or above) created maximum force and total work significantly greater than needle injections. Low-pressure NFLJIs (413 kPa), however, produced results similar to those of needle injections. Additionally, high-pressure NFLJIs created jet impingement pressure and maximum jet penetration pressure higher than low-pressure NFLJIs. Pilot RCTs revealed that high-pressure NFLJI caused a high risk of discomfort (60%) and paresthesia (20%); meanwhile, low-pressure NFLJI was less likely to cause complications (0%). The preliminary success rates of MINB from cadavers using NFLJIs and needles were 83.3% and 87.5%. In comparison, those from RCTs are 60% and 70%, respectively. To conclude, NFLJI supply pressure can be adjusted to achieve effective MINB with minimal complications. Furthermore, the cadaver study and pilot RCTs confirmed the feasibility for further non-inferiority RCT.
Collapse
Affiliation(s)
- Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Canada; Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Anna Henley
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Geoffroy Noël
- Faculty of Dentistry, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | - Zixin He
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Swen Grœn
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Rani Taher
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Karim Menassa
- Medical International Technology Canada Inc, Montreal, Canada
| | - Ana Velly
- Faculty of Dentistry, McGill University, Montreal, Canada; Lady Davis Institute, Department of Dentistry, SMBD, Jewish General Hospital, Montreal, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, Canada.
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|