1
|
Wu Y, Zhang X, Zhao D, Zhao JW, Zhen XM, Zhang B. Strategic engineering of cationic systems for spatial & temporal anti-counterfeiting applications in zero-dimensional Mn(II) halides. J Colloid Interface Sci 2025; 678:430-440. [PMID: 39303561 DOI: 10.1016/j.jcis.2024.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
While spatial and time-resolved anti-counterfeiting technologies have gained increasing attention owing to their excellent tunable photoluminescence, achieving high-security-level anti-counterfeiting remains a challenge. Herein, we developed a spatial-time-dual-resolved anti-counterfeiting system using zero-dimensional (0D) organic-inorganic Mn(II) metal halides: (EMMZ)2MnBr4 (named M-1, EMMZ=1-Ethyl-3-Methylimidazolium Bromide) and (EDMMZ)2MnBr4 (named M-2, EDMMZ=1-Ethyl-2,3-Dimethylimidazolium Bromide). M-1 shows a bright green emission with a quantum yield of 78 %. It undergoes a phase transformation from the crystalline to molten state with phosphorescence quenching at 350 K. Reversible phase and luminescent conversion was observed after cooling down for 15 s. Notably, M-2 exhibits green light emission similar to M-1 but undergoes phase conversion and phosphorescence quenching at 390 K, with reversible conversion observed after cooling down for 5 s. The photoluminescence switching mode of on(green)-off-on(green) can be achieved by temperature control, demonstrating excellent performance with short response times and ultra-high cyclic reversibility. By leveraging the different quenching temperatures and reversible PL conversion times of M-1 and M-2, we propose a spatial-time-dual-resolved photoluminescence (PL) switching system that combines M-1 and M-2. This system enables multi-fold tuning of the PL switch for encryption and decryption through cationic engineering strategies by modulating temperature and cooling time. This work presents a novel and feasible design strategy for advanced-level anti-counterfeiting technology based on a spatial-time-dual-resolved system.
Collapse
Affiliation(s)
- Yue Wu
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Xin Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Di Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Wei Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiao-Meng Zhen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Bo Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Zhang M, Raghunath A, Zhao A, Eral HB. Biocompatible optical physically unclonable function hydrogel microparticles for on-dose authentication. Heliyon 2024; 10:e22895. [PMID: 38163172 PMCID: PMC10756959 DOI: 10.1016/j.heliyon.2023.e22895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
On-dose authentication (ODA) enhances security by incorporating customized molecular or micro-tags into each pill, preventing counterfeit products in genuine packages. ODA's security relies on tag non-replication and non-reverse engineering. Combining ODA with graphical Physical Unclonable Functions (PUF) promises maximum security. PUF uses intrinsic micro or nanoscale randomness as a unique 'fingerprint'. However, current graphical PUFs have limitations like specific illumination requirements and the use of toxic materials, restricting their use in pharmaceuticals. In this study, we propose a novel approach called on-dose PUF. This method involves embedding microspheres randomly within micro biocompatible hydrogel particles. We showcase two distinct types of such on-dose PUFs. The first type utilizes randomly distributed superparamagnetic colloids (SPC) of identical diameters, while the second type utilizes vortexed sunflower oil drops of various diameters. The diameter and coordinates of the microspheres serve as input for generating cryptographic keys. A universal circle identification and binning program is used for extracting this information. One advantage of this approach is that it enables imaging using white light illumination and low-magnification microscopy, as color and signal intensity information are not crucial. This method enables patients to verify their medication by using their mobile phones from home. To assess the performance of the proposed on-dose PUF, we conducted canonical investigations on the single-diameter system. This system can only generate one layer of cryptographic keys, making it potentially more vulnerable than the multiple-diameter system. However, the single-diameter system successfully passed NIST Statistical tests and exhibited sufficient randomness, ideal bit uniformity, Hamming distance, and device uniqueness. Furthermore, we found that the encoding capacity of the single-diameter system was 9.2 × 10 18 , providing ample labeling potential.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands
| | - Aparna Raghunath
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands
| | - An Zhao
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands
| | - Huseyin Burak Eral
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands
- Van't Hoff Labs, Physical Chemistry, University of Utrecht, the Netherlands
| |
Collapse
|
3
|
Leem JW, Jeon HJ, Ji Y, Park SM, Kwak Y, Park J, Kim KY, Kim SW, Kim YL. Edible Matrix Code with Photogenic Silk Proteins. ACS CENTRAL SCIENCE 2022; 8:513-526. [PMID: 35647284 PMCID: PMC9136975 DOI: 10.1021/acscentsci.1c01233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 05/28/2023]
Abstract
Counterfeit medicines are a healthcare security problem, posing not only a direct threat to patient safety and public health but also causing heavy economic losses. Current anticounterfeiting methods are limited due to the toxicity of the constituent materials and the focus of secondary packaging level protections. We introduce an edible, imperceptible, and scalable matrix code of information representation and data storage for pharmaceutical products. This matrix code is digestible as it is composed of silk fibroin genetically encoded with fluorescent proteins produced by ecofriendly, sustainable silkworm farming. Three distinct fluorescence emission colors are incorporated into a multidimensional parameter space with a variable encoding capacity in a format of matrix arrays. This code is smartphone-readable to extract a digitized security key augmented by a deep neural network for overcoming fabrication imperfections and a cryptographic hash function for enhanced security. The biocompatibility, photostability, thermal stability, long-term reliability, and low bit error ratio of the code support the immediate feasibility for dosage-level anticounterfeit measures and authentication features. The edible code affixed to each medicine can serve as serialization, track and trace, and authentication at the dosage level, empowering every patient to play a role in combating illicit pharmaceuticals.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Hee-Jae Jeon
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Yuhyun Ji
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Sang Mok Park
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Yunsang Kwak
- Department
of Mechanical System Engineering, Kumoh
National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea
| | - Jongwoo Park
- Department
of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Kee-Young Kim
- Department
of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Seong-Wan Kim
- Department
of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Young L. Kim
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
- Purdue
University Center for Cancer Research, West Lafayette, Indiana 47907, United States
- Regenstrief
Center for Healthcare Engineering, West Lafayette, Indiana 47907, United States
- Purdue Quantum
Science and Engineering Institute, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Windolf H, Chamberlain R, Delmotte A, Quodbach J. Blind-Watermarking—Proof-of-Concept of a Novel Approach to Ensure Batch Traceability for 3D Printed Tablets. Pharmaceutics 2022; 14:pharmaceutics14020432. [PMID: 35214164 PMCID: PMC8879528 DOI: 10.3390/pharmaceutics14020432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Falsified medicines are a major issue and a threat around the world. Various approaches are currently being investigated to mitigate the threat. In this study, a concept is tested that encodes binary digits (bits) on the surface of Fused Deposition Modelling (FDM) 3D printed geometries. All that is needed is a computer, a FDM 3D printer and a paper scanner for detection. For the experiments, eleven different formulations were tested, covering the most used polymers for 3D printing in pharma: Ethylene-vinyl acetate (EVA), polyvinyl alcohol (PVA), polylactic acid (PLA), Hypromellose (HPMC), ethyl cellulose (EC), basic butylated-methacrylate-copolymer (EPO), and ammonio-methacrylate-copolymer type A (ERL). In addition, the scanning process and printing process were evaluated. It was possible to print up to 32 bits per side on oblong shaped tablets corresponding to the dimensions of market preparations of oblong tablets and capsules. Not all polymers or polymer blends were suitable for this method. Only PVA, PLA, EC, EC+HPMC, and EPO allowed the detection of bits with the scanner. EVA and ERL had too much surface roughness, too low viscosity, and cooled down too slowly preventing the detection of bits. It was observed that the addition of a colorant or active pharmaceutical ingredient (API) could facilitate the detection process. Thus, the process could be transferred for 3D printed pharmaceuticals, but further improvement is necessary to increase robustness and allow use for more materials.
Collapse
Affiliation(s)
- Hellen Windolf
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.)
| | - Rebecca Chamberlain
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.)
| | - Arnaud Delmotte
- Optical Media Interface Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Nara 630-0192, Japan;
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; (H.W.); (R.C.)
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|