1
|
Singh V, Morgan BA, Schertel A, Dolovich M, Xing Z, Thompson MR, Cranston ED. Internal microstructure of spray dried particles affects viral vector activity in dry vaccines. Int J Pharm 2023; 640:122988. [PMID: 37121491 DOI: 10.1016/j.ijpharm.2023.122988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
To maintain the activity of sensitive biologics during encapsulation by spray drying, a better understanding of deactivation pathways in dried particles is necessary. The effect of solid-air interfaces within dried particles on viral deactivation was examined with three binary excipient blends, mannitol/dextran (MD), xylitol/dextran (XD), and lactose/trehalose (LT). Particles encapsulating human serotype 5 adenovirus viral vector (AdHu5) were produced via both spray drying and acoustic levitation. The particles' internal microstructure was directly visualized, and the location of a viral vector analogue was spatially mapped within the particles by volume imaging using focused ion beam sectioning and scanning electron microscopy. The majority of the viral vector analogue was found at, or near, the solid-air interfaces. Peclet number and crystallization kinetics governed the internal microstructure of the particles: XD particles with minimal internal voids retained the highest viral activity, followed by MD particles with a few large voids, and finally LT particles with numerous internal voids exhibited the lowest viral activity. Overall, AdHu5 activity decreased as the total solid-air interfacial area increased (as quantified by nitrogen sorption). Along with processing losses, this work highlights the importance of surface area within particles as an indicator of activity losses for dried biologics.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Blair A Morgan
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | | | - Myrna Dolovich
- Firestone Aerosol Laboratory, St. Joseph's Healthcare, Hamilton, Ontario, Canada, L8N 4A6
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Ontario, Canada L8N 4L7
| | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Emily D Cranston
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7; Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T IZ4; Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| |
Collapse
|
2
|
Manser M, Morgan BA, Feng X, Rhem RG, Dolovich MB, Xing Z, Cranston ED, Thompson MR. Dextran Mass Ratio Controls Particle Drying Dynamics in a Thermally Stable Dry Powder Vaccine for Pulmonary Delivery. Pharm Res 2022; 39:2315-2328. [PMID: 35854077 PMCID: PMC9296218 DOI: 10.1007/s11095-022-03341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Thermally stable, spray dried vaccines targeting respiratory diseases are promising candidates for pulmonary delivery, requiring careful excipient formulation to effectively encapsulate and protect labile biologics. This study investigates the impact of dextran mass ratio and molecular weight on activity retention, thermal stability and aerosol behaviour of a labile adenoviral vector (AdHu5) encapsulated within a spray dried mannitol-dextran blend. METHODS Comparing formulations using 40 kDa or 500 kDa dextran at mass ratios of 1:3 and 3:1 mannitol to dextran, in vitro quantification of activity losses and powder flowability was used to assess suitability for inhalation. RESULTS Incorporating mannitol in a 1:3 ratio with 500 kDa dextran reduced viral titre processing losses below 0.5 log and displayed strong thermal stability under accelerated aging conditions. Moisture absorption and agglomeration was higher in dextran-rich formulations, but under low humidity the 1:3 ratio with 500 kDa dextran powder had the lowest mass median aerodynamic diameter (4.4 µm) and 84% emitted dose from an intratracheal dosator, indicating strong aerosol performance. CONCLUSIONS Overall, dextran-rich formulations increased viscosity during drying which slowed self-diffusion and favorably hindered viral partitioning at the particle surface. Reducing mannitol content also minimized AdHu5 exclusion from crystalline regions that can force the vector to air-solid interfaces where deactivation occurs. Although increased dextran molecular weight improved activity retention at the 1:3 ratio, it was less influential than the ratio parameter. Improving encapsulation ultimately allows inhalable vaccines to be prepared at higher potency, requiring less powder mass per inhaled dose and higher delivery efficiency.
Collapse
Affiliation(s)
- Myla Manser
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Blair A Morgan
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Xueya Feng
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Rod G Rhem
- Firestone Research Aerosol Laboratory, St. Joseph's Healthcare and Department of Medicine, McMaster University and Hamilton, Hamilton, ON, L8N 4A6, Canada
| | - Myrna B Dolovich
- Firestone Research Aerosol Laboratory, St. Joseph's Healthcare and Department of Medicine, McMaster University and Hamilton, Hamilton, ON, L8N 4A6, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Emily D Cranston
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.,Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|