1
|
Gong H, Griffin JD, Groer CE, Wu X, Li M, Abdelaziz MM, Xu L, Forrest ML, Berkland CJ. Intralesional injection of CpG ODNs complexed with glatiramer acetate mitigates systemic cytokine toxicities and synergistically advances checkpoint blockade efficacy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01798-9. [PMID: 39878856 DOI: 10.1007/s13346-025-01798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure. Here, we utilized glatiramer acetate (GA), the FDA-approved, lysine-rich polypeptides to complex CpG into polycationic nanoparticles (R4B) and investigated the safety and antitumor efficacy of CpG ODNs in the murine CT26 colorectal carcinoma model. In a maximum tolerated dose study, repetitive R4B treatment displayed comparable antitumor efficacy to CpG alone treatment within a dose range from 15 µg to 150 µg while significantly attenuating systemic proinflammatory cytokine IL-6 release. A pharmacokinetic and biodistribution analysis confirmed that R4B localized and gradually released CpG around the lesions within 96 h while 'naked' CpG quickly diffused from the injection site. Genome-wide transcriptome analysis validated that R4B treatment activated prominent TLR9-driven immune system responses in both lesions and spleens. In a CT26 multiple tumor model, intratumoral administration of R4B generated systemic immune efficacy, evidenced by an abscopal effect on untreated tumors. Notably, R4B treatment accomplished these effects with mitigated systemic proinflammatory cytokines when compared with CpG alone. We further discovered that combining R4B with anti-PD-1 treatment led to the most pronounced effects on tumor growth and longest benefits to survival time. Our investigation into possible mechanisms underlying this phenomenon included increased recruitment of cytotoxic CD8+ T cells and natural killer (NK) cells to the tumor microenvironments and the reversal of PD-L1/PD-1 axis inhibition. In summary, these results warrant further investigation for safely improving clinical responses in CPI-resistant solid tumor patients with localized CpG ODN therapy.
Collapse
Affiliation(s)
- Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, 66047, Lawrence, KS, USA
| | | | - Chad E Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, 66047, Lawrence, KS, USA
| | - Xiaoqing Wu
- Department of Molecular Biosciences, The University of Kansas, 66045, Lawrence, KS, USA
| | - Mengyue Li
- Department of Pharmaceutical Chemistry, The University of Kansas, 66047, Lawrence, KS, USA
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, 66047, Lawrence, KS, USA
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, 66045, Lawrence, KS, USA
| | - Marcus Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, 66047, Lawrence, KS, USA
| | - Cory J Berkland
- Kinimmune, Inc. St. Louis, 63141, Missouri, USA.
- Department of Biomedical Engineering, Washington University, 63105, Saint Louis, Missouri, USA.
- Department of Chemistry, Washington University, 63105, Saint Louis, Missouri, USA.
| |
Collapse
|
2
|
Gong H, Griffin JD, Groer CE, Wu S, Downes GM, Markum G, Abdelaziz MM, Alhakamy NA, Forrest ML, Berkland CJ. Glatiramer Acetate Complexes CpG Oligodeoxynucleotides into Nanoparticles and Boosts Their TLR9-Driven Immunity. Mol Pharm 2024. [PMID: 39484963 DOI: 10.1021/acs.molpharmaceut.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Unmethylated cytosine-guanine oligodeoxynucleotides (CpG ODNs) have a storied history as agonists for Toll-like receptor 9 (TLR9). CpG ODNs have shown promising antitumor effects in preclinical studies by inducing potent proinflammatory immune responses. However, clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure to CpG ODNs. We previously identified that glatiramer acetate (GA), an FDA-approved, lysine-rich polypeptide, could complex class B CpG into cationic nanoparticles which persist at the intratumoral injection site while mitigating the induction of systemic proinflammatory cytokines in mouse tumor models. To extend GA applications across subtypes of CpG ODN (class A, B, and C), we evaluated physiochemical properties and identified the immunological signaling of GA and its complexes with different classes of CpG ODNs. We compared the physiochemical characteristics of three types of GA-CpG nanoparticles, followed by assessments of cell uptake efficiency and endolysosomal trafficking. We then performed successive in vitro and in vivo assays to evaluate immunological discrepancies. Complexation with GA preserved the immunological activity of CpG ODN subtypes while encapsulating them into cationic spherical nanoparticles. GA improved the cellular uptake of CpG ODNs, generally increased retention in early endosomes, and amplified immunological responses. A subsequent in vivo experiment confirmed the achievement of potent tumor suppression while mitigating systemic immune-related toxicities. Together, these data help elucidate the noncanonical role of GA to serve as a nucleic acid delivery scaffold that can improve the efficacy and safety of CpG adjuvant for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Chad E Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Sa Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Grant M Downes
- Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Grace Markum
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Nabil A Alhakamy
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63105, United States
- Department of Chemistry, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Ma L, Qin N, Wan W, Song S, Hua S, Jiang C, Li N, Huang L, Gao X. TLR9 activation induces immunosuppression and tumorigenesis via PARP1/PD-L1 signaling pathway in oral squamous cell carcinoma. Am J Physiol Cell Physiol 2024; 326:C362-C381. [PMID: 38105756 DOI: 10.1152/ajpcell.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, and metastasis and immunosuppression are responsible for the poor prognosis of OSCC. Previous studies have shown that poly(ADP-ribose) polymerase (PARP)1 plays a key role in the pathogenesis of OSCC. Therefore, PARP1 may serve as an important research target for the potential treatment of OSCC. Here, we aimed to investigate the role of PARP1 in the tumorigenesis of OSCC and elucidate the key molecular mechanisms of its upstream and downstream regulation in vivo and in vitro. In human OSCC tissues and cells, Toll-like receptor (TLR)9 and PD-L1 were highly expressed and PARP1 was lowly expressed. Suppression of TLR9 remarkably repressed CAL27 and SCC9 cell proliferation, migration, and invasion. After coculture, we found that low expression of TLR9 inhibited PD-L1 expression and immune escape. In addition, TLR9 regulated PD-L1 expression through the PARP1/STAT3 pathway. PARP1 mediated the effects of TLR9 on OSCC cell proliferation, migration, and invasion and immune escape. Additionally, in vivo experiments further verified that TLR9 promoted tumor growth and immune escape by inhibiting PARP1. Collectively, TLR9 activation induced immunosuppression and tumorigenesis via PARP1/PD-L1 signaling pathway in OSCC, providing important insights for subsequent in-depth exploration of the mechanism of OSCC.NEW & NOTEWORTHY In this research, we took PARP1 as the key target to explore its regulatory effect on oral squamous cell carcinoma (OSCC). The key molecular mechanisms involved in its upstream and downstream regulation were elucidated in OSCC cell lines in vitro and tumor-bearing mice in vivo, combined with clinical OSCC tissues.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Niuyu Qin
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Wendong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Saiwen Song
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Siqi Hua
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Gao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Chakravarti AR, Groer CE, Gong H, Yudistyra V, Forrest ML, Berkland CJ. Design of a Tumor Binding GMCSF as Intratumoral Immunotherapy of Solid Tumors. Mol Pharm 2023; 20:1975-1989. [PMID: 36825806 DOI: 10.1021/acs.molpharmaceut.2c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Next-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor. One such immunostimulant is granulocyte macrophage-colony-stimulating factor (GMCSF) that functions by recruiting and activating antigen-presenting cells (dendritic cells) in the tumor, thereby initiating anti-tumor immune responses. However, key problems with GMCSF are lack of efficacy and the risk of systemic toxicity caused by the leakage of GMCSF from the tumor tissue. We have designed tumor-retentive versions of GMCSF that are safe yet potent immunostimulants for the local treatment of solid tumors. The engineered GMCSFs (eGMCSF) were synthesized by recombinantly fusing tumor-ECM (extracellular matrix) binding peptides to GMCSF. The eGMCSFs exhibited enhanced tumor binding and potent immunological activity in vitro and in vivo. Upon IT administration, the tumor-retentive eGMCSFs persisted in the tumor, thereby alleviating systemic toxicity, and elicited localized immune activation to effectively turn an unresponsive immunologically "cold" tumor "hot".
Collapse
Affiliation(s)
| | - Chad E Groer
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Vivian Yudistyra
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marcus Laird Forrest
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Galambus J, Tsai KY. Molecular and immune targets in cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:38-51. [PMID: 36000298 DOI: 10.1002/mc.23451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and often confers a good prognosis. Though surgery is the gold standard of treatment, unresectable or metastatic disease can necessitate systemic therapy. Of systemic agents, there is increasing interest in the use of immunotherapies and targeted therapy. Further study into the driver mutations in cSCC has identified opportunities for targeted therapy. In this review, we discuss both current and investigational immune and molecular targets of therapy for cSCC.
Collapse
Affiliation(s)
- Justine Galambus
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
7
|
Huang A, Groer C, Lu R, Forrest ML, Griffin JD, Berkland CJ. Glatiramer Acetate Complexed with CpG as Intratumoral Immunotherapy in Combination with Anti-PD-1. Mol Pharm 2022; 19:4357-4369. [DOI: 10.1021/acs.molpharmaceut.2c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Chad Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
- HylaPharm, LLC, Lawrence, Kansas 66047, United States
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
- HylaPharm, LLC, Lawrence, Kansas 66047, United States
| | | | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Kinimmune, Inc., Saint Louis, Missouri 63141, United States
| |
Collapse
|