1
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Rahmat JN, Liu J, Chen T, Li Z, Zhang Y. Engineered biological nanoparticles as nanotherapeutics for tumor immunomodulation. Chem Soc Rev 2024; 53:5862-5903. [PMID: 38716589 DOI: 10.1039/d3cs00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.
Collapse
Affiliation(s)
- Juwita N Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, The City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
3
|
Linde C, Chien YT, Chen Z, Mu Q. Nanoparticle-enhanced PD-1/PD-L1 targeted combination therapy for triple negative breast cancer. Front Oncol 2024; 14:1393492. [PMID: 38756653 PMCID: PMC11096478 DOI: 10.3389/fonc.2024.1393492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer with triple-negative subtype (TNBC) presents significant challenges with limited treatment options and a poorer prognosis than others. While PD-1/PD-L1 checkpoint inhibitors have shown promise, their efficacy in TNBC remains constrained. In recent years, nanoparticle (NP) technologies offer a novel approach to enhance cancer therapy by optimizing the tumor microenvironment and augmenting chemo- and immunotherapy effects in various preclinical and clinical settings. This review discusses recent investigations in NP strategies for improving PD-1/PD-L1 blockade-based combination therapy for TNBC. Those include single or multi-therapeutic NPs designed to enhance immunogenicity of the tumor, induce immunogenic cell death, and target immunosuppressive elements within the tumor microenvironment. The investigations also include NPs co-loaded with PD-L1 inhibitors and other therapeutic agents, leveraging targeted delivery and synergistic effects to maximize efficacy while minimizing systemic toxicity. Overall, NP approaches represent a promising avenue for enhancing PD-1/PD-L1 checkpoint blockade-based combination therapy in TNBC and encourage further developmental studies.
Collapse
Affiliation(s)
| | | | | | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
5
|
Salim EI, Mosbah AM, Elhussiny FA, Hanafy NAN, Abdou Y. Preparation and characterization of cetuximab-loaded egg serum albumin nanoparticles and their uses as a drug delivery system against Caco-2 colon cancer cells. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractTo avoid the harmful side effects of cetuximab and improve its therapeutic efficacy, egg serum albumin (ESA) was used as a targeting drug carrier moiety for cancer therapy against Caco-2 colon cancer cells. The simple improved desolvation method was used to synthesize ESA nanoparticles (ESA-NPs) and cetuximab-loaded albumin nanoparticles (CET-ANPs) with glutaraldehyde as a crosslinking agent. The ESA-NPs and CET-ANPs were spherically shaped, and their sizes and surface potentials were 100 and − 24 nm and 170 and − 20 nm, respectively, as determined using transmission electron microscopy (TEM) and a Zeta potential analyzer. The specific functional groups of the prepared nanoparticles were revealed by FTIR analysis. In the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, CET-ANPs exerted the highest antitumor activity after 24 h followed by CET, ESA-NPs, and pure ESA. Combination of CET + ESA-NPs at different IC50 concentrations at ratios of 1:1, 1:2, 2:1, 1:4, 4:1, 1:9, or 9:1 showed significant synergistic effects with a combination index (CI) > 1. Furthermore, the CET either loaded with ESA-NPs or administered in combination (CET + ESA NPs) caused significant apoptotic damage, as well as an S-phase or G2/M cell cycle arrest to the cancer cells, respectively. These were directly linked with a significant upregulation of mRNA expression of Caspase3 and Bax genes and an extreme downregulation of the mRNA expression of Bcl2, particularly in the combination treatment group, as compared to the untreated cells. Finally, ESA-NPs improved the effectiveness of cetuximab, strongly caused apoptotic and antiproliferative action with lower systemic toxicity, and could be suggested for the targeted administration of anticancer medications in various nanosystems.
Collapse
|
6
|
Li C, Zhang D, Pan Y, Chen B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers (Basel) 2023; 15:3354. [PMID: 37631411 PMCID: PMC10459149 DOI: 10.3390/polym15163354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
With the success of several clinical trials of products based on human serum albumin (HSA) and the rapid development of nanotechnology, HSA-based nanodrug delivery systems (HBNDSs) have received extensive attention in the field of nanomedicine. However, there is still a lack of comprehensive reviews exploring the broader scope of HBNDSs in biomedical applications beyond cancer therapy. To address this gap, this review takes a systematic approach. Firstly, it focuses on the crystal structure and the potential binding sites of HSA. Additionally, it provides a comprehensive summary of recent progresses in the field of HBNDSs for various biomedical applications over the past five years, categorized according to the type of therapeutic drugs loaded onto HSA. These categories include small-molecule drugs, inorganic materials and bioactive ingredients. Finally, the review summarizes the characteristics and current application status of HBNDSs in drug delivery, and also discusses the challenges that need to be addressed for the clinical transformation of HSA formulations and offers future perspectives in this field.
Collapse
Affiliation(s)
- Changyong Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Dagui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Yujing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
7
|
Liu N, Zhang R, Shi Q, Jiang H, Zhou Q. Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy. Bioorg Chem 2023; 136:106550. [PMID: 37121105 DOI: 10.1016/j.bioorg.2023.106550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
The drugs targeting the PD-1/PD-L1 pathway have gained abundant clinical applications for cancer immunotherapy. However, only a part of patients benefit from such immunotherapy. Thus, brilliant novel tactic to increase the response rate of patients is on the agenda. Nanocarriers, particularly the rationally designed intelligent delivery systems with controllable therapeutic agent release ability and improved tumor targeting capacity, are firmly recommended. In light of this, state-of-the-art nanocarriers that are responsive to tumor-specific microenvironments (internal stimuli, including tumor acidic microenvironment, high level of GSH and ROS, specifically upregulated enzymes) or external stimuli (e.g., light, ultrasound, radiation) and release the target immunomodulators at tumor sites feature the advantages of increased anti-tumor potency but decreased off-target toxicity. Given the fantastic past achievements and the rapid developments in this field, the future is promising. In this review, intelligent delivery platforms targeting the PD-1/PD-L1 axis are attentively appraised. Specifically, mechanisms of the action of these stimuli-responsive drug release platforms are summarized to raise some guidelines for prior PD-1/PD-L1-based nanocarrier designs. Finally, the conclusion and outlook in intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qiang Shi
- Moji-Nano Technology Co. Ltd., Yantai 264006, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Si K, Ye Z, Ali DJ, Ding B, He C, Dai Z, Li Z, Sun B, Shen Y, Xiao Z. Co-delivery of PDL1-blocking scFv and chemotherapeutics using engineered exosomes for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Evodiamine-loaded rhEGF-conjugated bovine serum albumin nanoparticles alleviate indomethacin-associated gastric mucosal injury in male SD rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Mohanty A, Park IK. Protein-Caged Nanoparticles: A Promising Nanomedicine Against Cancer. Chonnam Med J 2023; 59:1-12. [PMID: 36794248 PMCID: PMC9900222 DOI: 10.4068/cmj.2023.59.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/02/2023] Open
Abstract
Cancer is a severe threat to human wellness. A broad range of nanoparticles (NPs) have been developed to treat cancer. Given their safety profile, natural biomolecules such as protein-based NPs (PNPs) are promising substitutes for synthetic NPs that are currently used in drug delivery systems. In particular, PNPs have diverse characteristics and are monodisperse, chemically and genetically changeable, biodegradable, and biocompatible. To promote their application in clinical settings, PNPs must be precisely fabricated to fully exploit their advantages. This review highlights the different types of proteins that can be used to produce PNPs. Additionally, the recent applications of these nanomedicines and their therapeutic benefits against cancer are explored. Several future research directions that can facilitate the clinical application of PNPs are suggested.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
11
|
Pan-Cancer Landscape of NEIL3 in Tumor Microenvironment: A Promising Predictor for Chemotherapy and Immunotherapy. Cancers (Basel) 2022; 15:cancers15010109. [PMID: 36612106 PMCID: PMC9817722 DOI: 10.3390/cancers15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
With the aim of enhancing the understanding of NEIL3 in prognosis prediction and therapy administration, we conducted a pan-cancer landscape analysis on NEIL3. The mutation characteristics, survival patterns, and immune features of NEIL3 across cancers were analyzed. Western blotting, qPCR, and immunohistochemistry were conducted to validate the bioinformatics results. The correlation between NEIL3 and chemotherapeutic drugs, as well as immunotherapies, was estimated. NEIL3 was identified as an oncogene with prognostic value in predicting clinical outcomes in multiple cancers. Combined with the neoantigen, tumor mutational burden (TMB), and microsatellite instability (MSI) results, a strong relationship between NEIL3 and the TME was observed. NEIL3 was demonstrated to be closely associated with multiple immune parameters, including infiltrating immunocytes and pro-inflammatory chemokines, which was verified by experiments. More importantly, patients with a higher expression of NEIL3 were revealed to be more sensitive to chemotherapeutic regimens and immune checkpoint inhibitors in selected cancers, implying that NEIL3 may be an indicator for therapeutic administration. Our study indicated NEIL3 has a strong association with the immune microenvironment and phenotypic changes in certain types of cancers, which facilitated the improved understanding of NEIL3 across cancers and highlighted the potential for clinical application of NEIL3 in precision medical stratification.
Collapse
|
12
|
Ying N, Lin X, Xie M, Zeng D. Effect of surface ligand modification on the properties of anti-tumor nanocarrier. Colloids Surf B Biointerfaces 2022; 220:112944. [DOI: 10.1016/j.colsurfb.2022.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
13
|
Hopkins C, Javius-Jones K, Wang Y, Hong H, Hu Q, Hong S. Combinations of chemo-, immuno-, and gene therapies using nanocarriers as a multifunctional drug platform. Expert Opin Drug Deliv 2022; 19:1337-1349. [PMID: 35949105 DOI: 10.1080/17425247.2022.2112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cancer immunotherapies have created a new generation of therapeutics to employ the immune system to attack cancer cells. However, these therapies are typically based on biologics that are nonspecific and often exhibit poor tumor penetration and dose-limiting toxicities. Nanocarriers allow the opportunity to overcome these barriers as they have the capabilities to direct immunomodulating drugs to tumor sites via passive and active targeting, decreasing potential adverse effects from nonspecific targeting. In addition, nanocarriers can be multifunctionalized to deliver multiple cancer therapeutics in a single drug platform, offering synergistic potential from co-delivery approaches. AREAS COVERED This review focuses on the delivery of cancer therapeutics using emerging nanocarriers to achieve synergistic results via co-delivery of immune-modulating components (i.e. chemotherapeutics, monoclonal antibodies, and genes). EXPERT OPINION Nanocarrier-mediated delivery of combinatorial immunotherapy creates the opportunity to fine-tune drug release while achieving superior tumor targeting and tumor cell death, compared to free drug counterparts. As these nanoplatforms are constantly improved upon, combinatorial immunotherapy will afford the greatest benefit to treat an array of tumor types while inhibiting cancer evasion pathways.
Collapse
Affiliation(s)
- Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
15
|
Shim MK, Song SK, Jeon SI, Hwang KY, Kim K. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy. Expert Opin Drug Deliv 2022; 19:641-652. [DOI: 10.1080/17425247.2022.2081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Su Kyung Song
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biosystems & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Ik Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biosystems & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
16
|
Tian Z, Yao W. Albumin-Bound Paclitaxel: Worthy of Further Study in Sarcomas. Front Oncol 2022; 12:815900. [PMID: 35223497 PMCID: PMC8866444 DOI: 10.3389/fonc.2022.815900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Taxanes (paclitaxel and docetaxel) play an important role in the treatment of advanced sarcomas. Albumin-bound paclitaxel (nab-paclitaxel) is a new kind of taxane and has many advantages compared with paclitaxel and docetaxel. Nab-paclitaxel is currently approved for the treatment of advanced breast, non-small cell lung, and pancreatic cancers. However, the efficacy of nab-paclitaxel in sarcomas has not been reviewed. In this review, we first compare the similarities and differences among nab-paclitaxel, paclitaxel, and docetaxel and then summarize the efficacy of nab-paclitaxel against various non-sarcoma malignancies based on clinical trials with reported results. The efficacy and clinical research progress on nab-paclitaxel in sarcomas are also summarized. This review will serve as a good reference for the application of nab-paclitaxel in clinical sarcoma treatment studies and the design of clinical trials.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Kinoshita R, Ishima Y, Chuang VTG, Watanabe H, Shimizu T, Ando H, Okuhira K, Otagiri M, Ishida T, Maruyama T. The Therapeutic Effect of Human Serum Albumin Dimer-Doxorubicin Complex against Human Pancreatic Tumors. Pharmaceutics 2021; 13:pharmaceutics13081209. [PMID: 34452170 PMCID: PMC8402024 DOI: 10.3390/pharmaceutics13081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 01/14/2023] Open
Abstract
Human serum albumin (HSA) is a versatile drug carrier with active tumor targeting capacity for an antitumor drug delivery system. Nanoparticle albumin-bound (nab)-technology, such as nab-paclitaxel (Abraxane®), has attracted significant interest in drug delivery research. Recently, we demonstrated that HSA dimer (HSA-d) possesses a higher tumor distribution than HSA monomer (HSA-m). Therefore, HSA-d is more suitable as a drug carrier for antitumor therapy and can improve nab technology. This study investigated the efficacy of HSA-d-doxorubicin (HSA-d-DOX) as next-generation nab technology for tumor treatment. DOX conjugated to HSA-d via a tunable pH-sensitive linker for the controlled release of DOX. Lyophilization did not affect the particle size of HSA-d-DOX or the release of DOX. HSA-d-DOX showed significantly higher cytotoxicity than HSA-m-DOX in vitro. In the SUIzo Tumor-2 (SUIT2) human pancreatic tumor subcutaneous inoculation model, HSA-d-DOX could significantly inhibit tumor growth without causing serious side effects, as compared to the HSA binding DOX prodrug, which utilized endogenous HSA as a nano-drug delivery system (DDS) carrier. These results indicate that HSA-d could function as a natural solubilizer of insoluble drugs and an active targeting carrier in intractable tumors with low vascular permeability, such as pancreatic tumors. In conclusion, HSA-d can be an effective drug carrier for the antitumor drug delivery system against human pancreatic tumors.
Collapse
Affiliation(s)
- Ryo Kinoshita
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
- Correspondence: (Y.I.); (T.M.); Tel.: +81-88-633-7259 (Y.I.); +81-96-371-4153 (T.M.)
| | - Victor T. G. Chuang
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth 6845, Australia;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
| | - Keiichiro Okuhira
- Department of Environment and Health Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan;
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan;
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
- Correspondence: (Y.I.); (T.M.); Tel.: +81-88-633-7259 (Y.I.); +81-96-371-4153 (T.M.)
| |
Collapse
|