1
|
Han MM, Tang L, Huang B, Li XN, Fang YF, Qi L, Duan BW, Yao YT, He YJ, Xing L, Jiang HL. Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling. J Control Release 2024; 366:732-745. [PMID: 38242209 DOI: 10.1016/j.jconrel.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality. The Food and Drug Administration-approved drugs, nintedanib and pirfenidone, could delay progressive fibrosis by inhibiting the overactivation of fibroblast, however, there was no significant improvement in patient survival due to low levels of drug accumulation and remodeling of honeycomb cyst and interstitium surrounding the alveoli. Herein, we constructed a dual drug (verteporfin and pirfenidone)-loaded nanoparticle (Lip@VP) with the function of inhibiting airway epithelium fluidization and fibroblast overactivation to prevent honeycomb cyst and interstitium remodeling. Specifically, Lip@VP extensively accumulated in lung tissues via atomized inhalation. Released verteporfin inhibited the fluidization of airway epithelium and the formation of honeycomb cyst, and pirfenidone inhibited fibroblast overactivation and reduced cytokine secretion that promoted the fluidization of airway epithelium. Our results indicated that Lip@VP successfully rescued lung function through inhibiting honeycomb cyst and interstitium remodeling. This study provided a promising strategy to improve the therapeutic efficacy for IPF.
Collapse
Affiliation(s)
- Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Huang
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xue-Na Li
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yue-Fei Fang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo-Wen Duan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Ting Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Jing He
- School of Pharmaceutical Sciences & Institute of Materia Medica Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Fan W, Liu H, Zhang Y, Chen X, Huang M, Xu B. Diagnostic value of artificial intelligence based on computed tomography (CT) density in benign and malignant pulmonary nodules: a retrospective investigation. PeerJ 2024; 12:e16577. [PMID: 38188164 PMCID: PMC10768667 DOI: 10.7717/peerj.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective To evaluate the diagnostic value of artificial intelligence (AI) in the detection and management of benign and malignant pulmonary nodules (PNs) using computed tomography (CT) density. Methods A retrospective analysis was conducted on the clinical data of 130 individuals diagnosed with PNs based on pathological confirmation. The utilization of AI and physicians has been employed in the diagnostic process of distinguishing benign and malignant PNs. The CT images depicting PNs were integrated into AI-based software. The gold standard for evaluating the accuracy of AI diagnosis software and physician interpretation was the pathological diagnosis. Results Out of 226 PNs screened from 130 patients diagnosed by AI and physician reading based on CT, 147 were confirmed by pathology. AI had a sensitivity of 94.69% and radiologists had a sensitivity of 85.40% in identifying PNs. The chi-square analysis indicated that the screening capacity of AI was superior to that of physician reading, with statistical significance (p < 0.05). 195 of the 214 PNs suggested by AI were confirmed pathologically as malignant, and 19 were identified as benign; among the 29 PNs suggested by AI as low risk, 13 were confirmed pathologically as malignant, and 16 were identified as benign. From the physician reading, 193 PNs were identified as malignant, 183 were confirmed malignant by pathology, and 10 appeared benign. Physician reading also identified 30 low-risk PNs, 19 of which were pathologically malignant and 11 benign. The physician readings and AI had kappa values of 0.432 and 0.547, respectively. The physician reading and AI area under curves (AUCs) were 0.814 and 0.798, respectively. Both of the diagnostic techniques had worthy diagnostic value, as indicated by their AUCs of >0.7. Conclusion It is anticipated that the use of AI-based CT diagnosis in the detection of PNs would increase the precision in early detection of lung carcinoma, as well as yield more precise evidence for clinical management.
Collapse
Affiliation(s)
- Wei Fan
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Huitong Liu
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yan Zhang
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaolong Chen
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Minggang Huang
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Bingqiang Xu
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
3
|
Wen T, Gao Y, Zheng Y, Shan B, Song C, An Y, Cui J. Evaluation of New Folate Receptor-mediated Mitoxantrone Targeting Liposomes In Vitro. Curr Pharm Biotechnol 2024; 25:510-519. [PMID: 37957921 DOI: 10.2174/0113892010258845231101091359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Background: Ligand-mediated liposomes targeting folate receptors (FRs) that are overexpressed on the surface of tumor cells may improve drug delivery. However, the properties of liposomes also affect cellular uptake and drug release. Objective: Mitoxantrone folate targeted liposomes were prepared to increase the enrichment of drugs in tumor cells and improve the therapeutic index of drugs by changing the route of drug administration. Methods: Liposomes were prepared with optimized formulation, including mitoxantrone folatetargeted small unilamellar liposome (MIT-FSL), mitoxantrone folate-free small unilamellar liposome (MIT-SL), mitoxantrone folate-targeted large unilamellar liposome (MIT-FLL), mitoxantrone folate-free large unilamellar liposomes (MIT-LL). Cells with different levels of folate alpha receptor (FRα) expression were used to study the differences in the enrichment of liposomes, the killing effect on tumor cells, and their ability to overcome multidrug resistance. The results of the drug release experiment showed that the particle size of liposomes affected their release behavior. Large single-compartment liposomes could hardly be effectively released, while small single-compartment liposomes could be effectively released, MIT-FSL vs MIT-FLL and MIT-SL vs MIT-LL had significant differences in the drug release rate (P<0.0005). Cell uptake experiments results indicated that the ability of liposomes to enter folic acid receptor-expressing tumor cells could be improved after modification of folic acid ligands on the surface of liposomes and it was related to the expression of folate receptors on the cell surface. There were significant differences in cell uptake rates (p<0.0005) for cells with high FRα expression (SPC-A-1 cells), when MIT-FSL vs MIT-SL and MIT-FLL vs MIT-LL. For cells with low FRα expression (MCF-7 cells), their cell uptake rates were still different (p<0.05), but less pronounced than in SPC-A-1 cells. The results of the cell inhibition experiment suggest that MIT-FLL and MIT-LL had no inhibitory effect on cells, MIT-FSL had a significant inhibitory effect on cells and its IC50 value was calculated to be 4502.4 ng/mL, MIT-SL also had an inhibitory effect, and its IC50 value was 25092.1 ng/mL, there was a statistical difference (p<0.05), MIT-FSL had a higher inhibitory rate than MIT-SL at the same drug concentration. Afterward, we did an inhibitory experiment of different MIT-loaded nanoparticles on MCF-7 cells compared to the drug-resistant cells (ADR), Observing the cell growth inhibition curve, both MIT-FSL and MIT-SL can inhibit the growth of MCF-7 and MCF-7/ADR cells. For MCF- 7 cells, at the same concentration, there is little difference between the inhibition rate of MITFSL and MIT-SL, but for MCF-7/ADR, the inhibition rate of MIT-FSL was significantly higher than that of MIT-SL at the same concentration (P<0.05). Conclusion: By modifying folic acid on the surface of liposomes, tumor cells with high expression of folic acid receptors can be effectively targeted, thereby increasing the enrichment of intracellular drugs and improving efficacy. It can also change the delivery pathway, increase the amount of drug entering resistant tumor cells, and overcome resistance. .
Collapse
Affiliation(s)
- Tianjiao Wen
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yuan Gao
- Department of Pharmacy, the Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Ying Zheng
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Bin Shan
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Cong Song
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yahui An
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jingxia Cui
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
4
|
Yang Y, Lin M, Sun M, Zhang GQ, Guo J, Li J. Nanotechnology boosts the efficiency of tumor diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1249875. [PMID: 37576984 PMCID: PMC10419217 DOI: 10.3389/fbioe.2023.1249875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence and mortality of cancer are gradually increasing. The highly invasive and metastasis of tumor cells increase the difficulty of diagnosis and treatment, so people pay more and more attention to the diagnosis and treatment of cancer. Conventional treatment methods, including surgery, radiotherapy and chemotherapy, are difficult to eliminate tumor cells completely. And the emergence of nanotechnology has boosted the efficiency of tumor diagnosis and therapy. Herein, the research progress of nanotechnology used for tumor diagnosis and treatment is reviewed, and the emerging detection technology and the application of nanodrugs in clinic are summarized and prospected. The first part refers to the application of different nanomaterials for imaging in vivo and detection in vitro, which includes magnetic resonance imaging, fluorescence imaging, photoacoustic imaging and biomarker detection. The distinctive physical and chemical advantages of nanomaterials can improve the detection sensitivity and accuracy to achieve tumor detection in early stage. The second part is about the nanodrug used in clinic for tumor treatment. Nanomaterials have been widely used as drug carriers, including the albumin paclitaxel, liposome drugs, mRNA-LNP, protein nanocages, micelles, membrane nanocomplexes, microspheres et al., which could improve the drug accumulate in tumor tissue through enhanced permeability and retention effect to kill tumor cells with high efficiency. But there are still some challenges to revolutionize traditional tumor diagnosis and anti-drug resistance based on nanotechnology.
Collapse
Affiliation(s)
| | | | | | | | - Jianshuang Guo
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| | - Jianheng Li
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
5
|
Min SH, Lei W, Jun CJ, Yan ZS, Guang YX, Tong Z, Yong ZP, Hui LZ, Xing H. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert Opin Investig Drugs 2023; 32:723-739. [PMID: 37668152 DOI: 10.1080/13543784.2023.2254683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Lung cancer is one of the cancer types with the highest mortality rate, exploring a more effective treatment modality that improves therapeutic efficacy while mitigating side effects is now an urgent requirement. Designing multifunctional nanoparticles can be used to overcome the limitations of drugs and conventional drug delivery systems. Nanotechnology has been widely researched, and through different needs, suitable nanocarriers can be selected to load anti-cancer drugs to improve the therapeutic effect. It is foreseeable that with the rapid development of nanotechnology, more and more lung cancer patients will benefit from nanotechnology. This paper reviews the merits of various multifunctional nanoparticles in the treatment of lung cancer to provide novel ideas for lung cancer treatment. AREAS COVERED This review focuses on summarizing various nanoparticles for targeted lung cancer therapy and their advantages and disadvantages, using nanoparticles loaded with anti-cancer drugs, delivered to lung cancer sites, enhancing drug half-life, improving anti-cancer drug efficacy and reducing side effects. EXPERT OPINION The delivery mode of nanoparticles with superior pharmacokinetic properties in the in vivo circulation enhances the half-life of the drug, and provides tissue-targeted selectivity and the ability to overcome biological barriers, bringing a revolution in the field of oncology.
Collapse
Affiliation(s)
- Shen Hui Min
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Jia Jun
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Shao Yan
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Xu Guang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Tong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Pei Yong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen Hui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Xing
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Sun X, Zhao P, Lin J, Chen K, Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:390-415. [PMID: 37457134 PMCID: PMC10344729 DOI: 10.20517/cdr.2023.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Cancer is currently one of the most intractable diseases causing human death. Although the prognosis of tumor patients has been improved to a certain extent through various modern treatment methods, multidrug resistance (MDR) of tumor cells is still a major problem leading to clinical treatment failure. Chemotherapy resistance refers to the resistance of tumor cells and/or tissues to a drug, usually inherent or developed during treatment. Therefore, an urgent need to research the ideal drug delivery system to overcome the shortcoming of traditional chemotherapy. The rapid development of nanotechnology has brought us new enlightenments to solve this problem. The novel nanocarrier provides a considerably effective treatment to overcome the limitations of chemotherapy or other drugs resulting from systemic side effects such as resistance, high toxicity, lack of targeting, and off-target. Herein, we introduce several tumor MDR mechanisms and discuss novel nanoparticle technology applied to surmount cancer drug resistance. Nanomaterials contain liposomes, polymer conjugates, micelles, dendrimers, carbon-based, metal nanoparticles, and nucleotides which can be used to deliver chemotherapeutic drugs, photosensitizers, and small interfering RNA (siRNA). This review aims to elucidate the advantages of nanomedicine in overcoming cancer drug resistance and discuss the latest developments.
Collapse
Affiliation(s)
- Xiangyu Sun
- Medicines and Equipment Department, Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Jierou Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Kun Chen
- Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
7
|
Bhagya N, Chandrashekar KR. Liposome encapsulated anticancer drugs on autophagy in cancer cells - current and future perspective. Int J Pharm 2023:123105. [PMID: 37279869 DOI: 10.1016/j.ijpharm.2023.123105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Autophagy act as a double-edged sword in cancer with both tumor promoting and inhibiting roles. Under normal conditions of autophagy, the damaged cell organelles and other debris degrade inside the lysosome to provide energy and macromolecular precursors. However, enhanced autophagy can lead to apoptosis and programmed cell death highlighting its significance in cancer therapy. Liposome-based drug delivery systems for treating cancer patients have significant advantages over their non-formulated or free drug counterparts which could be effectively used to manipulate autophagy pathway in cancer patients. In the current review, drug uptake by the cells and its role in autophagy-mediated cancer cell death are discussed. Besides, the challenges and translational difficulties associated with the use of liposome-based chemotherapeutic drugs in clinical trials and in biomedical applications are also discussed.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - K R Chandrashekar
- Yenepoya Pharmacy and Ayush Research Centre (YEN PARC), Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
8
|
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled Lipid Nanoparticles Alleviate Established Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300545. [PMID: 37058092 DOI: 10.1002/smll.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Pulmonary fibrosis, a sequela of lung injury resulting from severe infection such as severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) infection, is a kind of life-threatening lung disease with limited therapeutic options. Herein, inhalable liposomes encapsulating metformin, a first-line antidiabetic drug that has been reported to effectively reverse pulmonary fibrosis by modulating multiple metabolic pathways, and nintedanib, a well-known antifibrotic drug that has been widely used in the clinic, are developed for pulmonary fibrosis treatment. The composition of liposomes made of neutral, cationic or anionic lipids, and poly(ethylene glycol) (PEG) is optimized by evaluating their retention in the lung after inhalation. Neutral liposomes with suitable PEG shielding are found to be ideal delivery carriers for metformin and nintedanib with significantly prolonged retention in the lung. Moreover, repeated noninvasive aerosol inhalation delivery of metformin and nintedanib loaded liposomes can effectively diminish the development of fibrosis and improve pulmonary function in bleomycin-induced pulmonary fibrosis by promoting myofibroblast deactivation and apoptosis, inhibiting transforming growth factor 1 (TGFβ1) action, suppressing collagen formation, and inducing lipogenic differentiation. Therefore, this work presents a versatile platform with promising clinical translation potential for the noninvasive inhalation delivery of drugs for respiratory disease treatment.
Collapse
Affiliation(s)
- Dongjun Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ang Zhao
- Department of medical affair, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|