1
|
Tang Y, Wang N, Liu W, Ding Q, Yang J, Wu X, Cheng Z, Hong B, Ding C. The ASB@HNTs-PVA nanofiber membrane, possessing both anti-inflammatory and hemostatic activities, promotes the healing of T2D skin wounds. Int Immunopharmacol 2024; 140:112780. [PMID: 39111148 DOI: 10.1016/j.intimp.2024.112780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
The healing of diabetic wounds has long been a significant challenge in the field of medicine. The elevated sugar levels surrounding diabetic wounds create a conducive environment for harmful bacterial growth, resulting in purulent infections that impede the healing process. Thus, the development of a biomaterial that can enhance the healing of diabetic wounds holds great importance. This study developed electrospun dressings for wound healing by combining traditional Chinese medicine and clay. The study utilized electrospinning technology to prepare polyvinyl alcohol (PVA) nanofiber membranes containing ASB and HNTs. These ASB@HNTs-PVA nanofiber membranes demonstrated rapid hemostasis, along with antibacterial and anti-inflammatory properties, facilitating the recovery of type 2 diabetic (T2D) wounds. Various analyses were conducted to assess the performance of the composite nanofiber membrane, including investigations into its biocompatibility and hemostatic abilities through antibacterial experiments, cell experiments, and mouse liver tail bleeding experiments. Western blot analysis confirmed that the composite nanofiber membrane could decrease the levels of inflammatory factors IL-1β and TNF-α. A type 2 diabetic mouse model was utilized, with wounds artificially induced on the backs of mice. Application of the nanofiber membrane to the wounds further confirmed its anti-inflammatory effects and ability to enhance wound healing in vivo.
Collapse
Affiliation(s)
- Yan Tang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Junran Yang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Xiaoyu Wu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Bo Hong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China.
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China.
| |
Collapse
|
2
|
Warale D, Shabeena M, Prabhu A, Kouser S, Manasa DJ, Nagaraja GK. Sustainable organosolv-lignin coated nanosilver-halloysites reinforced poly (vinyl alcohol) nanocomposites for wound healing application. Int J Biol Macromol 2024; 257:128628. [PMID: 38065442 DOI: 10.1016/j.ijbiomac.2023.128628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
This study involves the fabrication of innovative poly (vinyl alcohol) nanocomposite films by incorporating silver-embedded clay nanotubes with organosolv-lignin by the solution casting approach. The confirmation of this procedure was achieved through the utilisation of many techniques, including FTIR, PXRD, FE-SEM, and TGA. The aforementioned research have verified the adherence of silver nanoparticles to the surface of raw halloysites. The confirmation of lignin functionalization on these nanotubes has been established. This novel nanofiller was used to make a range of nanocomposite films with varying weight percentages ranging from 0 wt% to 5 wt%. With the increase in the wt% of nanofillers, These nanocomposite films exhibited greater thermal and mechanical stability compared to plain PVA. An investigation was conducted to examine the impact of the films on the cellular behaviour of murine fibroblast (NIH3T3) cell lines. Based on the findings from cell proliferation and scratch testing, it has been determined that these nanocomposite films are not harmful to cells, exhibit a greater rate of cell multiplication (116 ± 1.19), and demonstrate increased migratory capabilities (86.5 ± 0.50). Further investigations of human blood corroborate the evidence that these films are compatible with blood. Nanocomposite films have the potential to serve as wound healers following pre-clinical and clinical testing.
Collapse
Affiliation(s)
- Deepali Warale
- Department of Post-graduate studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, D.K., Karnataka, India
| | - M Shabeena
- Department of Post-graduate studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, D.K., Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Sabia Kouser
- Department of Chemistry, Karnataka Science college & PG Studies, Dharwad 580001, Karnataka, India
| | - D J Manasa
- Department of Studies in Botany, Davanagere University, Shivagangothri, 577007 Davanagere, Karnataka, India
| | - G K Nagaraja
- Department of Post-graduate studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, D.K., Karnataka, India.
| |
Collapse
|
3
|
Yang Y, Wang X, Yang F, Mu B, Wang A. Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomater Sci 2023; 11:7469-7488. [PMID: 37873611 DOI: 10.1039/d3bm01326j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The occurrence of uncontrolled hemorrhage is a significant threat to human life and health. Although hemostatic materials have made remarkable advances in the biomaterials field, it remains a challenge to develop safe and effective hemostatic materials for global medical use. Natural clay minerals (CMs) have long been used as traditional inorganic hemostatic agents due to their good hemostatic capability, biocompatibility and easy availability. With the advancement of science, technology and ideology, CM-based hemostatic materials have undergone continuous innovations by integrating new inspirations with conventional concepts. This review systematically summarizes the hemostatic mechanisms of different natural CMs based on their nanostructures. Moreover, it also comprehensively reviews the latest research progress for CM-based hemostatic hybrid and nanocomposite materials, and discusses the challenges and developments in this field.
Collapse
Affiliation(s)
- Yinfeng Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Xiaomei Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|
4
|
Cui S, Yang F, Yu D, Shi C, Zhao D, Chen L, Chen J. Double Network Physical Crosslinked Hydrogel for Healing Skin Wounds: New Formulation Based on Polysaccharides and Zn 2. Int J Mol Sci 2023; 24:13042. [PMID: 37685860 PMCID: PMC10488206 DOI: 10.3390/ijms241713042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Developing convenient, efficient, and natural wound dressings remain the foremost strategy for treating skin wounds. Thus, we innovatively combined the semi-dissolved acidified sol-gel conversion method with the internal gelation method to fabricate SA (sodium alginate)/CS (chitosan)/Zn2+ physically cross-linked double network hydrogel and named it SA/CS/Zn2+ PDH. The characterization results demonstrated that increased Zn2+ content led to hydrogels with improved physical and chemical properties, such as rheology, water retention, and swelling capacity. Moreover, the hydrogels exhibited favorable antibacterial properties and biocompatibility. Notably, the establishment of an in vitro pro-healing wound model further confirmed that the hydrogel had a superior ability to repair wounds and promote skin regeneration. In future, as a natural biomaterial with antimicrobial properties, it has the potential to promote wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (S.C.); (F.Y.); (D.Y.); (C.S.); (D.Z.); (L.C.)
| |
Collapse
|
5
|
Mao G, Tian S, Shi Y, Yang J, Li H, Tang H, Yang W. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydr Polym 2023; 311:120757. [PMID: 37028858 DOI: 10.1016/j.carbpol.2023.120757] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this paper, the mixed solution of sodium alginate (SA) and arginine (Arg) was dried into a film and then crosslinked with zinc ion to form sodium alginate-arginine-zinc ion (SA-Arg-Zn2+) hydrogel for skin wound dressings. SA-Arg-Zn2+ hydrogel had higher swelling ability, which was beneficial to absorbing wound exudate. Moreover, it exhibited antioxidant activity and strong inhibition against E. coli and S. aureus, and had no obvious cytotoxicity to NIH 3T3 fibroblasts. Compared with other dressings utilized in rat skin wound, SA-Arg-Zn2+ hydrogel showed better wound healing efficacy and the wound closure ratio reached to 100 % on the 14th day. The result of Elisa test indicated that SA-Arg-Zn2+ hydrogel down-regulated the expression of inflammatory factors (TNF-α and IL-6) and promoted the growth factor levels (VEGF and TGF-β1). Furthermore, H&E staining results confirmed that SA-Arg-Zn2+ hydrogel could reduce wound inflammation and accelerate re-epithelialization, angiogenesis and wound healing. Therefore, SA-Arg-Zn2+ hydrogel is an effective and innovative wound dressing, moreover, the preparation technique is simple and feasible for industrial application.
Collapse
|
6
|
Wang Y, Shi Y, Liu J, Yang W, Tang H, Li H. Developing hyaluronic acid-proline-ferric ion cross-linked film for efficient wound healing application. Int J Pharm 2023:123140. [PMID: 37354928 DOI: 10.1016/j.ijpharm.2023.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
A novel cross-linked film dressing that can accelerate wound healing and guard against bacterial infection was presented in this work. The hyaluronic acid-proline-ferric ion (HA-Pro-Fe3+) film was successfully prepared by physically cross-linking method, which the carboxyl groups of the HA and Pro molecules should be in coordination with Fe3+. The HA-Pro-Fe3+ cross-linked film showed three-dimensional porous structure, appropriate water vapor permeability and swelling property, favorable cytocompatibility and hemocompatibility, antibacterial and antioxidative capability. The results of rat skin wound healing confirmed that HA-Pro-Fe3+ film could accelerate epithelial regeneration and collagen deposition, promote angiogenesis and significantly improve skin wound healing. Elisa analysis indicated that HA-Pro-Fe3+ material could down-regulate the expression of IL-6 and TNF-α, and up-regulate the level of TGF-β1 and VEGF. Given its biocompatibility, antibacterial ability, promotion of cell proliferation and angiogenesis, the wide application of HA-Pro-Fe3+ cross-linked film in wound repair would be anticipated.
Collapse
Affiliation(s)
- Yihua Wang
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanxia Shi
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jie Liu
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Wendhi Yang
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026 PR China.
| | - Haiying Li
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Warale D, Prabhu A, Kouser S, Shabeena M, Manasa DJ, Nagaraja GK. Incorporation of sodium alginate functionalized halloysite nanofillers into poly (vinyl alcohol) to study mechanical, cyto/heme compatibility and wound healing application. Int J Biol Macromol 2023; 232:123278. [PMID: 36657540 DOI: 10.1016/j.ijbiomac.2023.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In this study, the Halloysite nanotubes (HNTs) are surface-functionalized with sodium alginate (Sod.alg) and poly (vinyl alcohol) (PVA) were employed to generate nanocomposite films (Sod.alg-rHNT/PVA). These nanocomposite films were made via the solution casting technique. FE-SEM data verified sod.alg-rHNT dispersion into the PVA matrix. The modifications were confirmed from FTIR, TGA and PXRD techniques. In the mechanical studies of synthesized nanocomposite films, the films showed a considerable increase in the tensile strength and Young's modulus values. The nanocomposite film's ability to induce cell proliferation and migration was investigated using murine fibroblast (NIH3T3) cells. The films increased cellular proliferation (128 ± 1.07 %) compared to the neat PVA. Cell adhesion tests showed cytocompliant films. In the scratch assay, the 5 wt% film elicited wound closure at a faster rate (91.53 ± 1.04 %). Films were compatible with human blood cells. Therefore the prepared nanocomposite films can be used as promising wound healers after pre-clinical and clinical testing.
Collapse
Affiliation(s)
- Deepali Warale
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 D.K., Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Sabia Kouser
- Department of Chemistry, Karnataka Science College & PG studies, Dharwad 580001, Karnataka, India
| | - M Shabeena
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 D.K., Karnataka, India
| | - D J Manasa
- Department of Studies in Botany, Davanagere University, Shivagangothri, 577007, Davanagere, Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 D.K., Karnataka, India.
| |
Collapse
|
8
|
Saraiva MM, Campelo MDS, Câmara Neto JF, Lima ABN, Silva GDA, Dias ATDFF, Ricardo NMPS, Kaplan DL, Ribeiro MENP. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J Biomed Mater Res B Appl Biomater 2023; 111:220-233. [PMID: 35959858 DOI: 10.1002/jbm.b.35146] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The skin is the largest organ in the human body and its physical integrity must be maintained for body homeostasis and to prevent the entry of pathogenic microorganisms. Sodium alginate (SA) and polyvinyl alcohol (PVA) are two polymers widely used in films for wound dressing applications. Furthermore, blends between SA and PVA improve physical, mechanical and biological properties of the final wound healing material when compared to the individual polymers. Different drugs have been incorporated into SA/PVA-based films to improve wound healing activity. It is noteworthy that SA/PVA films can be crosslinked with Ca2+ or other agents, which improves physicochemical and biological properties. Thus, SA/PVA associations are promising for the biomedical field, as a potential alternative for wound treatment. This review focuses on the main techniques for obtaining SA/PVA films, their physical-chemical characterization, drug incorporation, and the advantages and challenges of these films for wound healing.
Collapse
Affiliation(s)
- Matheus Morais Saraiva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Beatriz Nogueira Lima
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - George de Almeida Silva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Andre Tavares de Freitas Figueredo Dias
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Yu F, Wang K, Li H, Peng L. Superhydrophobic and ethylene scavenging paper doped with halloysite nanotubes for food packaging applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Sun W, Liu X, Li X, Wang S, Li Q, Sun Z. A method for the treatment of black tea waste: Converting it into liquid mulching film and solid mulching film. J Appl Polym Sci 2022. [DOI: 10.1002/app.53481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Wei Sun
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Xin Liu
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Xiang Li
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Shujie Wang
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Qing Li
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Zhonghua Sun
- College of Chemistry and Chemical Engineering Taishan University Taian Shandong China
| |
Collapse
|
11
|
In vitro evaluation of modified halloysite nanotubes with sodium alginate-reinforced PVA/PVP nanocomposite films for tissue engineering applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Domyati D. Thermal stability and antibacterial activity of Er2O3, and Co3O4 scattered in Polycaprolactone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Mascarenhas-Melo F, Gonçalves MBS, Peixoto D, Pawar KD, Bell V, Chavda VP, Zafar H, Raza F, Paiva-Santos AC, Paiva-Santos AC. Application of nanotechnology in management and treatment of diabetic wounds. J Drug Target 2022; 30:1034-1054. [PMID: 35735061 DOI: 10.1080/1061186x.2022.2092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic wounds are one of the most common health problems worldwide, enhancing the demand for new management strategies. Nanotechnology, as a developing subject in diabetic wound healing, is proving to be a promising and effective tool in treatment and care. It is, therefore, necessary to ascertain the available and distinct nanosystems and evaluate their performance when topically applied to the injury site, especially in diabetic wound healing. Several active ingredients, including bioactive ingredients, growth factors, mesenchymal stem cells, nucleic acids, and drugs, benefit from improved properties when loaded into nanosystems. Given the risk of problems associated with systemic administration, the topical application should be considered, provided stability and efficacy are assured. After nanoencapsulation, active ingredients-loaded nanosystems have been showing remarkable features of biocompatibility, healing process hastening, angiogenesis, and extracellular matrix compounds synthesis stimulation, contributing to a decrease in wound inflammation. Despite limitations, nanotechnology has attracted widespread attention in the scientific community and seems to be a valuable technological ally in the treatment and dressing of diabetic wounds. The use of nanotechnology in topical applications enables efficient delivery of the active ingredients to the specific skin site, increasing their bioavailability, stability, and half-life time, without compromising their safety.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Maria Beatriz S Gonçalves
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Victoria Bell
- Laboratory of Social Pharmacy and Public Health, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Feng M, Fu Q, Li J, Li J, Wang Q, Liu X, Jin W, Li W, Chu PK, Yu Z. Sodium alginate coating on biodegradable high-purity magnesium with a hydroxide/silane transition layer for corrosion retardation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Martin A, Cai J, Schaedel AL, van der Plas M, Malmsten M, Rades T, Heinz A. Zein-polycaprolactone core-shell nanofibers for wound healing. Int J Pharm 2022; 621:121809. [PMID: 35550408 DOI: 10.1016/j.ijpharm.2022.121809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
In a previous study, we developed electrospun antimicrobial microfiber scaffolds for wound healing composed of a core of zein protein and a shell containing polyethylene oxide. While providing a promising platform for composite nanofiber design, the scaffolds showed low tensile strengths, insufficient water stability, as well as burst release of the antimicrobial drug tetracycline hydrochloride, properties which are not ideal for the use of the scaffolds as wound dressings. Therefore, the aim of the present study was to develop fibers with enhanced mechanical strength and water stability, also displaying sustained release of tetracycline hydrochloride. Zein was chosen as core material, while the shell was formed by the hydrophobic polymer polycaprolactone, either alone or in combination with polyethylene oxide. As compared to control fibers of pristine polycaprolactone, the zein-polycaprolactone fibers exhibited a reduced diameter and hydrophobicity, which is beneficial for cell attachment and wound closure. Such fibers also demonstrated sustained release of tetracycline hydrochloride, as well as water stability, ductility, high mechanical strength and fibroblast attachment, hence representing a step towards the development of biodegradable wound dressings with prolonged drug release, which can be left on the wound for a longer time.
Collapse
Affiliation(s)
- Alma Martin
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; School of Medicine, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan (current address)
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anna-Lena Schaedel
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mariena van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, S-22184 Lund, Sweden
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: Thermal, mechanical properties and biocompatibility for tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|