1
|
El-Say KM, Megahed MA, Abdalla A, El-Sawy HS, Afify H, Ramadan AA, Ahmed TA. P-gp inhibition and enhanced oral bioavailability of amikacin Sulfate: A novel approach using Thiolated Chito-PEGylated Lipidic Hybrids. Int J Pharm 2024; 658:124200. [PMID: 38710298 DOI: 10.1016/j.ijpharm.2024.124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia.
| | - Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ahmed Abdalla
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Afaf A Ramadan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11765, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Datta D, Noor A, Rathee A, Singh S, Kohli K. Hypothesizing the Oleic Acid-Mediated Enhanced and Sustained Transdermal Codelivery of Pregabalin and Diclofenac Adhesive Nanogel: A Proof of Concept. Curr Mol Med 2024; 24:1317-1328. [PMID: 38847251 DOI: 10.2174/0115665240291343240306054318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 10/19/2024]
Abstract
Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120⁰, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEEbased nanogel across the human skin can be achieved to inhibit inflammation and pain.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Afeefa Noor
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Snigdha Singh
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Kanchan Kohli
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Khafagy ES, Motawee AO, Ghorab MM, Gardouh AR. Atorvastatin-loaded pro-nanolipospheres with ameliorated oral bioavailability and antidyslipidemic activity. Colloids Surf B Biointerfaces 2023; 227:113361. [PMID: 37236085 DOI: 10.1016/j.colsurfb.2023.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Despite significant advances in oral drug delivery technologies, many drugs are prone to limited oral bioavailability due to biological barriers that hinder drug absorption. Pro-nanolipospheres (PNL) are a form of delivery system that can potentiate the oral bioavailability of poorly water-soluble drugs through a variety of processes, including increased drug solubility and protecting them from degradation by intestinal or hepatic first-pass metabolism. In this study, pro-nanolipospheres were employed as a delivery vehicle for improving the oral bioavailability of the lipophilic statin, atorvastatin (ATR). Various ATR-loaded PNL formulations, composed of various pharmaceutical ingredients, were prepared by the pre-concentrate method and characterized by determining particle size, surface charge, and encapsulation efficiency. An optimized formula (ATR-PT PNL) showing the smallest particle size, highest zeta potential, and highest encapsulation efficiency was selected for further in vivo investigations. The in vivo pharmacodynamic experiments demonstrated that the optimized ATR-PT PNL formulation exerted a potent hypolipidemic effect in a Poloxamer® 407-induced hyper-lipidaemia rat model by restoring normal cholesterol and triglyceride serum levels along with alleviating serum levels of LDL while elevating serum HDL levels, compared to pure drug suspensions and marketed ATR (Lipitor®). Most importantly, oral administration of the optimized ATR-PT PNL formulation showed a dramatic increase in ATR oral bioavailability, as evinced by a 1.7- and 3.6-fold rise in systemic bioavailability when compared with oral commercial ATR suspensions (Lipitor®) and pure drug suspension, respectively. Collectively, pro-nanolipospheres might represent a promising delivery vehicle for enhancing the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Abeer Osama Motawee
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of pharmaceutical sciences, Faculty of pharmacy, Jadara university, Irbid 21110, Jordan
| |
Collapse
|
4
|
Akl MA, Ryad S, Ibrahim MF, Kassem AA. Formulation, and Optimization of Transdermal Atorvastatin Calcium-Loaded Ultra-flexible Vesicles; Ameliorates Poloxamer 407-caused Dyslipidemia. Int J Pharm 2023; 638:122917. [PMID: 37019321 DOI: 10.1016/j.ijpharm.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14%) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125%, and cumulative drug release of 88.92 ± 3.78% over 24 hours. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.
Collapse
|
5
|
Naser YA, Tekko IA, Vora LK, Peng K, Anjani QK, Greer B, Elliott C, McCarthy HO, Donnelly RF. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug. J Control Release 2023; 356:416-433. [PMID: 36878320 DOI: 10.1016/j.jconrel.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Hydrogel-forming microarray patches (HF-MAPs) are used to circumvent the skin barrier and facilitate the noninvasive transdermal delivery of many hydrophilic substances. However, their use in the delivery of hydrophobic agents is a challenging task. This work demonstrates, for the first time, the successful transdermal long-acting delivery of the hydrophobic atorvastatin (ATR) via HF-MAPs using poly(ethylene)glycol (PEG)-based solid dispersion (SD) reservoirs. PEG-based SDs of ATR were able to completely dissolve within 90 s in vitro. Ex vivo results showed that 2.05 ± 0.23 mg of ATR/0.5 cm2 patch was delivered to the receiver compartment of Franz cells after 24 h. The in vivo study, conducted using Sprague Dawley rats, proved the versatility of HF-MAPs in delivering and maintaining therapeutically-relevant concentrations (> 20 ng·mL-1) of ATR over 14 days, following a single HF-MAP application for 24 h. The long-acting delivery of ATR suggests the successful formation of hydrophobic microdepots within the skin, allowing for the subsequent sustained delivery as they gradually dissolve over time, as shown in this work. When compared to the oral group, the use of the HF-MAP formulation improved the overall pharmacokinetics profile of ATR in plasma, where significantly higher AUC values resulting in ∼10-fold higher systemic exposure levels were obtained. This novel system offers a promising, minimally-invasive, long-acting alternative delivery system for ATR that is capable of enhancing patient compliance and therapeutic outcomes. It also proposes a unique promising platform for the long-acting transdermal delivery of other hydrophobic agents.
Collapse
Affiliation(s)
- Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
El-Say KM, Al-Hejaili OD, El-Sawy HS, Alhakamy NA, Abd-Allah FI, Safo MK, Ahmed TA. Incorporating sodium deoxycholate endorsed the buccal administration of avanafil to heighten the bioavailability and duration of action. Drug Deliv Transl Res 2023:10.1007/s13346-023-01314-x. [PMID: 36853437 DOI: 10.1007/s13346-023-01314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
The highly effective phosphodiesterase type 5 inhibitor (avanafil; AVA) is routinely prescribed to treat erectile dysfunction. The drug has poor oral bioavailability and undergoes a significant first-pass metabolism. Therefore, altering AVA's solubility and choosing a different delivery method may boost its effectiveness. Nine different solid dispersion formulations utilizing polyvinylpyrrolidone (PVP) at three different ratios were prepared and characterized. The Box-Behnken design was employed to optimize AVA-buccal tablets. The pre-compression and post-compression characteristics of the tablets were assessed. The mucoadhesion strength of the optimized tablet was investigated using cow buccal mucosal tissue. In vivo performance of the optimized tablets was examined on human volunteers compared to the commercial tablets. PVP K90 at 2:1 drug to polymer ratio showed the highest solubilization capacity. The mucoadhesive polymer type and percentage and the mucopenetration enhancer percentage were significantly affect the mucoadhesion strength, tablet hardness, and the initial and cumulative AVA released from the prepared tablets. The optimized AVA-buccal tablet showed 4.96 folds increase in the mean residence time, higher plasma exposure, and an improvement in the relative bioavailability of AVA by 1076.27% compared with the commercial tablet. Therefore, a successful approach to deal with AVA first-pass metabolism and low bioavailability could be to employ buccal tablets containing a solubility-enhanced form of AVA.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Omar D Al-Hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo, 11829, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Ahmed TA, Alotaibi HA, Almehmady AM, Safo MK, El-Say KM. Influences of Glimepiride Self-Nanoemulsifying Drug Delivery System Loaded Liquisolid Tablets on the Hypoglycemic Activity and Pancreatic Histopathological Changes in Streptozotocin-Induced Hyperglycemic Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223966. [PMID: 36432252 PMCID: PMC9695338 DOI: 10.3390/nano12223966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
The development of an oral anti-diabetic medication characterized by enhanced hypoglycemic activity is in high demand. The goal was to study the hypoglycemic activity and pancreatic histopathology after the black-seed-based self-nanoemulsifying drug delivery system (SNEDDS) loaded with glimepiride liquisolid tablets to diabetic rats. The solubility of glimepiride in various vehicles was investigated. An optimization SNEDDS formulation was developed using a mixture of the experimental design approach. Box-Behnken design (BBD) was used to develop glimepiride liquisolid tablets utilizing Avicel PH 101 and Neusilin as a carrier mixture and FujiSil as a coating material. The quality attributes of the prepared tablets were assessed. Following the administration of the optimized tablets to diabetic rats, the pharmacodynamics and histopathological changes were investigated and compared to a commercial drug product. Results revealed that the optimized SNEDDS formulation that contains 15.43% w/w black seed oil, 40% w/w Tween 80, and 44.57% w/w Polyethylene glycol 400 showed an average droplet size of 34.64 ± 2.01 nm and a drug load of 36.67 ± 3.13 mg/mL. The optimized tablet formulation contained 0.31% Avicel in the carrier mixture, a 14.99 excipient ratio, and 8% superdisintegrant. Pre- and post-compression properties were satisfactory, and the optimized glimepiride liquisolid tablet showed a two-fold increase in dissolution. The optimized tablet demonstrated superior pharmacodynamics. The pancreatic tissues of the group treated with the optimized tablet displayed normal histological structure. The obtained data offered a commercially viable alternative for manufacturing solid dosage forms containing water-insoluble drugs, but additional clinical research is required.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-2-640-0000 (ext. 22250)
| | - Hanadi A. Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Megahed MA, El-Sawy HS, Reda AM, Abd-Allah FI, Abu Elyazid SK, Lila AE, Ismael HR, El-Say KM. Effect of nanovesicular surface-functionalization via chitosan and/or PEGylation on cytotoxicity of tamoxifen in induced-breast cancer model. Life Sci 2022; 307:120908. [PMID: 36028168 DOI: 10.1016/j.lfs.2022.120908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022]
Abstract
AIMS The effect of surface-modification of Tamoxifen (Tam)-loaded-niosomes on drug cytotoxicity and bio-distribution, via functionalization with chitosan and/or PEGylation, was investigated. MATERIALS AND METHODS Tam-loaded hybrid-nanocarriers (Tam-loaded niosomes, chitosomes, PEGylated niosomes, and PEGylated chitosomes) were formulated and characterized. KEY FINDINGS Chitosanization with/without PEGylation proved to selectively enhance Tam-release at the cancerous-acidic micromilieu. Cytotoxic activity study showed that Tam-loaded PEGylated niosomes had a lower IC50 value on MCF-7 cell line (0.39, 0.35, and 0.27 times) than Tam-loaded PEGylated chitosomes, Tam-loaded niosomes, and Tam-loaded chitosomes, respectively. Cell cycle analysis showed that PEGylation and/or Chitosanization significantly impact Tam efficiency in inducing apoptosis, with a preferential influence of PEGylation over chitosanization. The assay of Annexin-V/PI double staining revealed that chitosanized-nanocarriers had a significant role in increasing the incidence of apoptosis over necrosis. Besides, PEGylated-nanocarriers increased apoptosis, as well as total death and necrosis percentages more than what was shown from free Tam. Moreover, the average changes in both Bax/Bcl-2 ratio and Caspase 9 were best improved in cells treated by Tam-loaded PEGylated niosomes over all other formulations. The in-vivo study involving DMBA-induced-breast cancer rats revealed that PEGylation made the highest tumor-growth inhibition (84.9 %) and breast tumor selectivity, while chitosanization had a lower accumulation tendency in the blood (62.3 ng/ml) and liver tissues (103.67 ng/ml). The histopathological specimens from the group treated with Tam-loaded PEGylated niosomes showed the best improvement over other formulations. SIGNIFICANCE All these results concluded the crucial effect of both PEGylation and chitosan-functionalization of Tam-loaded niosomes in enhancing effectiveness, targetability, and safety.
Collapse
Affiliation(s)
- Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo 11829, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo 11829, Egypt
| | - Ahmed M Reda
- Department of Biochemistry, Egyptian Russian University, Cairo 11829, Egypt
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt; International Center for Bioavailability, Pharmaceutical and Clinical Research, Obour City 11828, Egypt
| | - Sherif K Abu Elyazid
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Ahmed E Lila
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Hatem R Ismael
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
El-Say KM, Felimban RI, Tayeb HH, Chaudhary AG, Omar AM, Rizg WY, Alnadwi FH, Abd-Allah FI, Ahmed TA. Pairing 3D-Printing with Nanotechnology to Manage Metabolic Syndrome. Int J Nanomedicine 2022; 17:1783-1801. [PMID: 35479768 PMCID: PMC9038162 DOI: 10.2147/ijn.s357356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction This work was aimed to develop a Curcuma oil-based self-nanoemulsifying drug delivery system (SNEDDS) 3D-printed polypills containing glimepiride (GMD) and rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes as a model for metabolic syndrome (MS). Methods Compartmentalized 3D printed polypills were prepared and studied in streptozotocin/poloxamer induced diabetic/dyslipidemic rats. The pharmacokinetic parameters of GMD and RSV in the prepared polypills were evaluated. Blood glucose level, lipid profile, antioxidant, and biochemical markers activities were investigated. Also, histopathological examination of the liver and pancreas was carried out. The atherosclerotic index, the area of islets of Langerhans, and liver steatosis lesion scores were calculated. Results The developed SNEDDS-loaded GMD/RSV polypills showed acceptable quality control characteristics with a high relative bioavailability of 217.16% and 224.28% for GMD and RSV, respectively, when compared with the corresponding non-SNEDDS pills. The prepared polypills showed dramatic lowering in blood glucose levels and substantial improvement in lipid profile and hepatic serum biomarkers as well as remarkable decrease in serum antioxidants in response to Poloxamer 407 intoxication. The prepared polypills decreased the risk of atherosclerosis and coronary disease by boosting the level of high-density lipoprotein and lowering both triglyceride and low-density lipoprotein. Microscopic examination showed normal hepatic sinusoids and high protection level with less detectable steatosis in the examined hepatocytes. Normal size pancreatic islets with apparently normal exocrine acini and pancreatic duct were also noticed. Conclusion This formulation strategy clearly shows the potential of the developed polypills in personalized medicine for treatment of patients with MS.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam H Tayeb
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fuad H Alnadwi
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|