1
|
Li X, Chandler M, Avila YI, Arroyo-Becker SI, Patriarche G, Vargas-Berenguel A, Casas-Solvas JM, Afonin KA, Gref R. Nanoscale metal-organic frameworks for the delivery of nucleic acids to cancer cells. Int J Pharm X 2023; 5:100161. [PMID: 36817971 PMCID: PMC9931914 DOI: 10.1016/j.ijpx.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
Therapeutic nucleic acids (TNAs) are gaining increasing interest in the treatment of severe diseases including viral infections, inherited disorders, and cancers. However, the efficacy of intracellularly functioning TNAs is also reliant upon their delivery into the cellular environment, as unmodified nucleic acids are unable to cross the cell membrane mainly due to charge repulsion. Here we show that TNAs can be effectively delivered into the cellular environment using engineered nanoscale metal-organic frameworks (nanoMOFs), with the additional ability to tailor which cells receive the therapeutic cargo determined by the functional moieties grafted onto the nanoMOF's surface. This study paves the way to integrate the highly ordered programmable nucleic acids into larger-scale functionalized nanoassemblies.
Collapse
Affiliation(s)
- Xue Li
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yelixza I. Avila
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Sandra I. Arroyo-Becker
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Antonio Vargas-Berenguel
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, 04120 Almería, Spain
| | - Juan M. Casas-Solvas
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, 04120 Almería, Spain
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
2
|
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022; 190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
Since the first report in 1989, Metal-Organic Frameworks (MOFs) self-assembled from metal ions or clusters, as well as organic linkers, have attracted extensive attention. Due to their flexible composition, large surface areas, modifiable surface properties, and their degradability, there has been an exponential increase in the study of MOFs materials, specifically in drug delivery system areas such as infection, diabetes, pulmonary disease, ocular disease, imaging, tumor therapy, and especially cancer theranostics. In this review, we discuss the trends in MOFs biosafety, from "green" synthesis to applications in drug delivery systems. Firstly, we present the different "green" synthesis approaches used to prepare MOFs materials. Secondly, we detail the methods for the functional coating, either through grafting targeting units, poly(ethylene glycol) (PEG) chains or by using cell membranes. Then, we discuss drug encapsulation strategies, host-guest interactions, as well as drug release mechanisms. Lastly, we report on the drug delivery applications of nanoscale MOFs. In particular, we discuss MOFs-based imaging techniques, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and fluorescence imaging. MOFs-based cancer therapy methods are also presented, such as photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy (RT), chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Wenbo Liu
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
3
|
Zeng Y, Xu G, Kong X, Ye G, Guo J, Lu C, Nezamzadeh-Ejhieh A, Shahnawaz Khan M, Liu J, Peng Y. Recent advances of the core-shell MOFs in tumour therapy. Int J Pharm 2022; 627:122228. [PMID: 36162610 DOI: 10.1016/j.ijpharm.2022.122228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022]
Abstract
Coordination chemistry has always been vital to explore the material prominence of metal-organic systems. The metal-organic chemistry plays a fundamental role in decisive structural features, which are accountable for tuning the properties of materials. Tumour therapy has become an important research field of medical treatment in the world. Metal-organic frameworks (MOFs) have attracted extensive interest in medical science research due to their large effective surface area, clear pore network, and critical catalytic performance. Compared with traditional MOF materials, MOF materials with core-shell structures have a higher loading rate and better stability, which can overcome a single function. They have been successfully used in tumour medical research and have excellent prospects for diagnosing and treating various tumours. The current review article thoroughly describes the various synthetic approaches for engineering core-shell MOF materials, the structural types, and the potential functional applications. We also discussed core-shell MOF materials for the various treatment of tumours, such as tumour chemotherapy, tumour phototherapy and tumour microenvironment anti-hypoxia therapy. In this paper, the synthesized procedures of core-shell MOFs and their applications for tumour treatment have been discussed, and their future research has prospected. The current improved strategies, challenges, and prospects are also presented because of the metal-organic chemistry governing the structural modification of core-shell MOFs for tumour therapy applications. Therefore, the present review article opens a new door for medicinal chemists to tune the structural features of the core-shell MOF materials to modulate tumour therapy with simple, low-cost materials for better human lives.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guihua Xu
- Department of Science and Education, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Xiangyang Kong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
5
|
Barjasteh M, Vossoughi M, Bagherzadeh M, Pooshang Bagheri K. Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int J Pharm 2022; 618:121647. [PMID: 35288221 DOI: 10.1016/j.ijpharm.2022.121647] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
In this study, the potential of using MIL-100(Fe) metal-organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF formulation were investigated against melanoma A375 cell lines. The results revealed that the PEG coating (PEGylation) changed the surface charge of MOF from -2.8 ± 0.9 mV to -42.8 ± 1.2 mV, which can contribute to the colloidal stability of MOF. The PEGylation showed a significant effect on controlled drug release, especially in SCM, which increases the complete release time from 60 h to 12 days. Moreover, both of the drug-containing MOFs showed more toxicity than DTIC and unloaded MOFs, confirming that the cumulative release of drug and better cellular uptake of NPs lead to increased toxicity.
Collapse
Affiliation(s)
- Mahdi Barjasteh
- Institute for Nano-science and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | | | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|