1
|
Tai W, Yau GTY, Arnold JC, Chan HK, Kwok PCL. High-loading cannabidiol powders for inhalation. Int J Pharm 2024; 660:124370. [PMID: 38906498 DOI: 10.1016/j.ijpharm.2024.124370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Limited attempts have been made previously to develop high-loading CBD inhalable powders, which are essential for high dose delivery. Therefore, this study aimed to develop and characterise inhalable powders with ≥ 95 % w/w CBD by wet ball milling. The effects of magnesium stearate (2 % and 5 %) and inhaler resistance (low-resistance and high-resistance RS01 inhalers) on aerosol performance were also compared. Wet ball milling produced CBD powders with > 50 % production yield. The milled particles showed irregular shapes. The powders were crystalline with minimal amorphous content, low residual solvent level (<1%), and low moisture sorption (<4%). Magnesium stearate improved both the emitted and fine particle fractions. The aerodynamic particle size distribution of the formulations differed between the low-resistance and high-resistance RS01 inhalers. The latter decreased throat deposition but increased inhaler retention. The dissolution profiles showed that all three formulations released CBD steadily and plateaued at 30 min. The best scenario was CBD with 5 % magnesium stearate dispersed from the high resistance RS01 inhaler, showing the highest FPF with the lowest throat deposition. This combination may be tested in vivo in the future to investigate its pharmacokinetic profile.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Grace Tsz Yan Yau
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Jonathon Carl Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia; Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
3
|
Zhang Q, Wang Z, Shi K, Zhou H, Wei X, Hall P. Improving Inhalation Performance with Particle Agglomeration via Combining Mechanical Dry Coating and Ultrasonic Vibration. Pharmaceutics 2023; 16:68. [PMID: 38258079 PMCID: PMC10821125 DOI: 10.3390/pharmaceutics16010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and poor fine-particle delivery. In the present study, fine lactose was mechanically dry-coated prior to particle agglomeration, and the agglomerates were then spheroidized via ultrasonic vibration to improve their aerosol performance. The results showed that the agglomerate produced with the surface-enriched hydrophobic magnesium stearate and ultrasonic vibration demonstrated improved aerosolization properties, benefiting from their lower mechanical strength, less interactive cohesive force, and improved fine powder dispersion behavior. After dispersion utilizing a Turbuhaler® with a pharmaceutical cascade impactor test, a fine particle fraction (FPF) of 71.1 ± 1.3% and an artificial throat deposition of 19.3 ± 0.4% were achieved, suggesting the potential to improve the therapeutic outcomes of budesonide with less localized infections of the mouth and pharynx.
Collapse
Affiliation(s)
- Qingzhen Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
| | - Zheng Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd., Suzhou 215000, China;
| | - Hang Zhou
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Philip Hall
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China;
| |
Collapse
|
4
|
Lim YY, Zaidi AMA, Miskon A. Composing On-Program Triggers and On-Demand Stimuli into Biosensor Drug Carriers in Drug Delivery Systems for Programmable Arthritis Therapy. Pharmaceuticals (Basel) 2022; 15:1330. [PMID: 36355502 PMCID: PMC9698912 DOI: 10.3390/ph15111330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 08/31/2023] Open
Abstract
Medication in arthritis therapies is complex because the inflammatory progression of rheumatoid arthritis (RA) and osteoarthritis (OA) is intertwined and influenced by one another. To address this problem, drug delivery systems (DDS) are composed of four independent exogenous triggers and four dependent endogenous stimuli that are controlled on program and induced on demand, respectively. However, the relationships between the mechanisms of endogenous stimuli and exogenous triggers with pathological alterations remain unclear, which results in a major obstacle in terms of clinical translation. Thus, the rationale for designing a guidance system for these mechanisms via their key irritant biosensors is in high demand. Many approaches have been applied, although successful clinical translations are still rare. Through this review, the status quo in historical development is highlighted in order to discuss the unsolved clinical difficulties such as infiltration, efficacy, drug clearance, and target localisation. Herein, we summarise and discuss the rational compositions of exogenous triggers and endogenous stimuli for programmable therapy. This advanced active pharmaceutical ingredient (API) implanted dose allows for several releases by remote controls for endogenous stimuli during lesion infections. This solves the multiple implantation and local toxic accumulation problems by using these flexible desired releases at the specified sites for arthritis therapies.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
5
|
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350:668-687. [PMID: 36057395 PMCID: PMC9884093 DOI: 10.1016/j.jconrel.2022.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kalika Mahato
- College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|