1
|
Abdullah HD, Kamal I, Sabry SA, Elghany MA, Hakim Ramadan AE. Effective tailoring of cefepime into bilosomes: A promising nanoplatform for enhancing oral absorption, extending half-life, and evaluating biocompatibility, antibacterial, anti-biofilm, anti-breast cancer activity, ex-vivo, and in-vivo studies. Int J Pharm 2025; 668:125001. [PMID: 39586513 DOI: 10.1016/j.ijpharm.2024.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The clinical implication of cefepime HCl (CEF) is compromised owing to restricted oral bioavailability and harmful adverse effects without any authorized oral formulation available. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles the challenges of limited oral bioavailability and prolongs the half-life of CEF. Accordingly, CEF was loaded into a bilosome, a liposome or noisome-based vesicle employing bile salt as a permeation enhancer. Despite its hydrophilic nature, the drug was effectively loaded into bilosomes. Nine various formulas were fabricated by a reverse phase evaporation method. The resulting vesicles increased the encapsulation efficiency (EE %) from 39.31 ± 0.03 % to 63.09 ± 0.01 %, drug loading capacity (DLC %) from 6.99 ± 0.25 to 42.91 ± 0.11 %, the particle size (PS) from 264 ± 13.52 nm to 405.40 ± 8.91 nm, and the polydispersity index (PDI) values ranged from 0.243 ± 0.040 to 0.430 ± 0.050. The zeta potential (ZP) changed from - 35.67 ± 3.73 mV to - 62.21 ± 2.21 mV. Further, the release profile exhibited dual release pattern within 24 h, with the percentage of release (CR %) expanding from 42 ± 0.13 % to 69.16 ± 0.09 %. The selected formula was found to be B3 with EE % = 56.61 ± 0.02 %, PS = 264 ± 13.52 nm, ZP = - 62.21 ± 2.21 mV, PDI = 0.430 ± 0.050, CR % = 52.94 ± 0.06 %, and IC50 of 3.4 ± 0.40 µg/ml against MCF-7 cells with scattered spherical non-agglomerated vesicles. Additionally, it exhibited higher anti-MRSA biofilm, relative bioavailability (5.1 fold), and antimicrobial capacity against P. aeruginosa, E. coli, B. subtilis, and S. aureus compared to pure CEF. Our data demonstrate that bilosome is a powerful nanocarrier for oral delivery of cefepime, boosting its biological impacts and pharmacokinetic profile.
Collapse
Affiliation(s)
- Hend Diaa Abdullah
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Shereen A Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Abd Elghany
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Abd El Hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| |
Collapse
|
2
|
Hashem FM, Elkhateeb D, Ali MM, Abdel-Rashid RS. In-vivo and in-vitro assessment of curcumin loaded bile salt stabilized nanovesicles for oral delivery. Daru 2024; 33:9. [PMID: 39714544 DOI: 10.1007/s40199-024-00544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Bile salts enriched nanovesicles (bilosomes) have been attention worthy in the past few years due to their distinctive effect on the enhancement of drug delivery through various physiological administration routes. Oral delivery of multifunctioning phytochemical curcumin has faced a lot of difficulties due to its scarce solubility and poor oral bioavailability. OBJECTIVE The current investigation aimed to develop curcumin loaded bilosomes for improvement of oral curcumin bioavailability with maximum efficiency and safety. METHODS The effect of formulation variables (type of span, SDC % to total lipid content Span/Cholesterol molar ratio) on physicochemical characterization and in vitro drug release in simulated intestinal fluid was investigated. Furthermore, in-vivo protective effect of bilosomes on hepatic and renal functions was also studied. RESULTS and conclusion. The results revealed that the best curcumin loaded bilosomal formulation showed spherical nanovesicular morphology with particle size 145.1 ± 19.42 nm with highly reasonable %EE (93%), Zeta potential (≥ -30mv), prominent controlled in-vitro release reaching 55.18 ± 1.10 after 96 h. The formulation also showed good storage stability with negligible differences in physical features and content. The IC50 values of bilosomal, niosomal, and free curcumin were 216.50, 211.44, and 121.63 mmol/ml, respectively revealing that the unencapsulated curcumin displayed high toxicity on Caco2 cell line (nearly 2 folds). Additionally, the prepared bilosomes showed significant in-vivo hepatic and renal protection in liver cirrhosis induced rats with conservation to all liver and renal markers and histopathological morphology. The study assumes the effectiveness and safety of oral delivery of curcumin loaded bile salts stabilized nanovesicles and its powerful commandment for further investigations.
Collapse
Affiliation(s)
- Fahima M Hashem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, POB 11795, Egypt
| | - Dalia Elkhateeb
- Central Administration of Drug Control, Egyptian Drug Authority, Cairo, Egypt
| | - Marwa M Ali
- Central Administration of Drug Control, Egyptian Drug Authority, Cairo, Egypt
| | - Rania S Abdel-Rashid
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, POB 11795, Egypt.
- Nanotechnology Center, Helwan University, Cairo, Egypt.
| |
Collapse
|
3
|
Zakaria MY, Elmaaty AA, El-Shesheny R, Alnajjar R, Kutkat O, Ben Moussa S, Abdullah Alzahrani AY, El-Zahaby SA, Al-Karmalawy AA. Biological and computational assessments of thiazole derivative-reinforced bile salt enriched nano carriers: a new gate in targeting SARS-CoV-2 spike protein. RSC Adv 2024; 14:38778-38795. [PMID: 39654925 PMCID: PMC11627215 DOI: 10.1039/d4ra07316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
There is merit in investigating novel therapeutic molecules that hit vital targets during the viral infection cycle i.e. disrupting the interaction between SARS-CoV-2's spike glycoprotein and the host's angiotensin converting enzyme 2 (ACE2) receptor, potentially offering new avenues for treatment. Accordingly, lipid-based vesicular systems like liposomes or niosomes are frequently utilized to overcome these hurdles. Thus, chemically synthesized compounds were encapsulated within PEGylated bilosomes (PBs) to improve their solubility and intestinal permeability, thereby enhancing their anti-SARS-CoV-2 effectiveness. The formulae were prepared according to 23 full factorial design which was also used to explore the impact of the change in predetermined formulation variables on the properties of the prepared vesicles (entrapment efficiency EE%, particle size PS, and zeta potential ZP). Additionally, the optimized formula (F4) which is composed of 3% bile salt (BS), 40 mg 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE) and sodium deoxycholate (SDC) as a bile salt, was selected as an optimum formula with desirability value 0.674 using Design Expert® software. Both the in vitro release and ex vivo experiments results confirmed the significant superiority of the F4 over the drug dispersion. Both cytotoxicity and anti-SARS-CoV-2 activity of all examined compound-loaded PBs (PB3a-PB3g) were assessed in Vero E6 cells via MTT assay. Both compounds PB3c and PB3g displayed the highest IC50 values (0.71 and 1.25 μg mL-1, respectively) ensuring their superior antiviral potential. Moreover, it was revealed that PB3c demonstrated more than 80% virucidal activity and over 80% inhibition of viral adsorption with little effect on the viral replication ∼(5-10%). Moreover, molecular docking and dynamic studies were conducted to pursue the binding affinities of the investigated compounds towards the ACE2 target of the SARS-CoV-2 spike protein, assuring their feasible inhibitory potential. Collectively, the investigated compound-loaded PBs can be treated as promising lead drug delivery panels for COVID-19 management.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University Ras Sudr 46612 South Sinai Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port Said National University Port Said 42526 Egypt
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Institute, National Research Centre Dokki-Giza 12622 Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi 16063 Libya
- Department of Chemistry, Faculty of Science, University of Benghazi Benghazi 16063 Libya
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Institute, National Research Centre Dokki-Giza 12622 Egypt
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-Just) Alexandria Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
4
|
Mayo B, Penroz S, Torres K, Simón L. Curcumin Administration Routes in Breast Cancer Treatment. Int J Mol Sci 2024; 25:11492. [PMID: 39519045 PMCID: PMC11546575 DOI: 10.3390/ijms252111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is a public health concern worldwide, characterized by increasing incidence and mortality rates, requiring novel and effective therapeutic strategies. Curcumin is a bioactive compound extracted from turmeric with several pharmacological activities. Curcumin is a multifaceted anticancer agent through mechanisms including the modulation of signaling pathways, inhibition of cell proliferation, induction of apoptosis, and production of reactive oxygen species. However, the poor water solubility and bioavailability of curcumin create important barriers in its clinical application. This review elaborates on the therapeutic potential of curcumin in breast cancer treatment, focusing on the efficacy of different administration routes and synergistic effects with other therapeutic agents. The intravenous administration of curcumin-loaded nanoparticles significantly improves bioavailability and therapeutic outcomes compared to oral routes. Innovative formulations, such as nano-emulsifying drug delivery systems, have shown promise in enhancing oral bioavailability. While intravenous delivery ensures higher bioavailability and direct action on tumor cells, it is more invasive and expensive than oral administration. Advancing research on curcumin in breast cancer treatment is essential for improving therapeutic outcomes and enhancing the quality of life of patients.
Collapse
Affiliation(s)
| | | | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| |
Collapse
|
5
|
Mohsen AM, Wagdi MA, Salama A. Rutin loaded bilosomes for enhancing the oral activity and nephroprotective effects of rutin in potassium dichromate induced acute nephrotoxicity in rats. Sci Rep 2024; 14:23799. [PMID: 39394242 PMCID: PMC11479598 DOI: 10.1038/s41598-024-73567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
Rutin, a flavone glycoside, has shown to have a significant beneficial kidney protection effect in drug-induced nephropathy. However, its poor solubility and low oral bioavailability have limited its pharmacological applications. This study aimed at formulating rutin-loaded bilosomes to enhance the renal protective effect of rutin for oral application. Rutin-loaded bilosomes were developed using thin-film hydration technique. The prepared formulations were characterized by entrapment efficiency percentage (EE%), vesicular size (VS) and zeta potential (ZP) measurement. The developed formula exhibited moderate EE%, ranging from 20.02 ± 2.85 to 48.57 ± 3.57%, suitable VS results that ranged from 502.1 ± 36 to 665.1 ± 45 nm and high ZP values (≤ -41.4 ± 7.27 mV). Transmission electron microscopy revealed the spherical shape of the developed bilosomes. The in-vitro release study revealed prolonged release of rutin from bilosomes, relative to free drug. F2, prepared using the molar ratio span 60: cholesterol: sodium cholate 1:1:0.5, was selected for further investigations as it showed the highest EE%, smallest VS, optimum ZP, and persistent release profile. In-vivo studies were performed on drug-induced nephropathy in rats. Acute renal failure was induced using a single dose of potassium dichromate (PDC; 15 mg/kg; i.p). The selected formulation, F2, alleviated kidney dysfunction, oxidative stress and inflammation via decreasing MDA, TNF-α and TGF-β and increasing GSH. In addition, F2 promoted Akt/PI3K activation against PDC-induced acute renal failure. Histopathology results came in accordance with in-vivo results. Thus, bilosomes could be considered a potential delivery system for enhancing the oral delivery and kidney protection activity of rutin.
Collapse
Affiliation(s)
- Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Marwa Anwar Wagdi
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Zafar A, Alsaidan OA, Mohamed MS, Yasir M, Khalid M. Development of Gentamicin Bilosomes Laden In Situ Gel for Topical Ocular Delivery: Optimization, In Vitro Characterization, Toxicity, and Anti-microbial Evaluation. Adv Pharm Bull 2024; 14:646-664. [PMID: 39494264 PMCID: PMC11530890 DOI: 10.34172/apb.2024.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The eye drops are the prominent preparation used to treat surface eye disease (bacterial conjunctivitis). However, they have some limitations i.e., short corneal residence, resulting in low ocular bioavailability and necessitating frequent dose administration. The present study developed gentamicin (GE) bilosomes (BM)- laden in situ gel to improve therapeutic activity. The in situ gel system is initially in sol form before administration and converted into gel form in physiological eye conditions. Methods The GE-BM was developed using the thin film hydration technique and optimized by D-optimal design. GE-BM was characterized for vesicle size, entrapment efficiency, zeta potential, morphology, and Fourier transform electron microscope (FTIR). The optimized GE-BM (GE-BMopt) was incorporated into an in situ gel and assessed for physicochemical characteristics. GE-BMopt in situ gel was evaluated for in vitro release, ex vivo permeation, toxicity, and antimicrobial study. Results GE-BMopt has a vesicle size of 185.1±4.8nm, PDI of 0.254, zeta potential of 27.6 mV, entrapment efficiency of 81.86±1.29 %, and spherical morphology. The FTIR study presented no chemical interactions between GE and excipients. GE-BMopt in situ gel (GE-BMoptIG4) showed excellent viscosity, gelling strength, and ex-vivo bio-adhesion. GE-BMopt-IG4 showed significant high and sustained release of GE (78.08±4.73% in 12h). GE-BMopt-IG4 displayed 3.27-fold higher ex-vivo goat corneal permeation than a pure GE solution. GE-BMopt-IG4 showed good corneal tolerance without any damage or irritation. GE-BMopt-IG4 showed significantly (P<0.05) higher anti-bacterial activity (ZOI) against Staphylococcus aureus and Escherichia coli than pure GE solution. Conclusion The study determined that the BM in situ gel system can serve as a substitute carrier for GE to enhance its therapeutic effectiveness, and further preclinical studies are required.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Ibrahiem B, Shamma R, Salama A, Refai H. Magnetic targeting of lornoxicam/SPION bilosomes loaded in a thermosensitive in situ hydrogel system for the management of osteoarthritis: Optimization, in vitro, ex vivo, and in vivo studies in rat model via modulation of RANKL/OPG. Drug Deliv Transl Res 2024; 14:1982-2002. [PMID: 38158473 PMCID: PMC11153292 DOI: 10.1007/s13346-023-01503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis is a bone and joint condition characterized pathologically by articular cartilage degenerative damage and can develop into a devastating and permanently disabling disorder. This investigation aimed to formulate the anti-inflammatory drug lornoxicam (LOR) into bile salt-enriched vesicles loaded in an in situ forming hydrogel as a potential local treatment of osteoarthritis. This was achieved by formulating LOR-loaded bilosomes that are also loaded with superparamagnetic iron oxide nanoparticles (SPIONs) for intra-muscular (IM) administration to improve joint targeting and localization by applying an external magnet to the joint. A 31.22 full factorial design was employed to develop the bilosomal dispersions and the optimized formula including SPION (LSB) was loaded into a thermosensitive hydrogel. Moreover, in vivo evaluation revealed that the IM administration of LSB combined with the application of an external magnet to the joint reversed carrageen-induced suppression in motor activity and osteoprotegerin by significantly reducing the elevations in mitogen-activated protein kinases, extracellular signal-regulated kinase, and receptor activator of nuclear factor kappa beta/osteoprotegerin expressions. In addition, the histopathological evaluation of knee joint tissues showed a remarkable improvement in the injured joint tissues. The results proved that the developed LSB could be a promising IM drug delivery system for osteoarthritis management.
Collapse
Affiliation(s)
- Basma Ibrahiem
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12566, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre (NRC), Giza, 12622, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12566, Egypt.
| |
Collapse
|
8
|
Chary PS, Bansode A, Rajana N, Bhavana V, Singothu S, Sharma A, Guru SK, Bhandari V, Mehra NK. Enhancing breast cancer treatment: Comprehensive study of gefitinib-loaded poloxamer 407/TPGS mixed micelles through design, development, in-silico modelling, In-Vitro testing, and Ex-Vivo characterization. Int J Pharm 2024; 657:124109. [PMID: 38626846 DOI: 10.1016/j.ijpharm.2024.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Breast cancer continues to pose a substantial global health challenge, emphasizing the critical need for the advancement of novel therapeutic approaches. Key players in the regulation of apoptosis, a fundamental process in cell death, are the B-cell lymphoma 2 (Bcl-2) family proteins, namely Bcl-2 and Bax. These proteins have garnered attention as highly promising targets for the treatment of breast cancer. Targeting the overexpressed anti-apoptotic Bcl-2 protein in breast cancer, Gefitinib (GEF), an EGFR (Epidermal Growth Factor Receptor) inhibitor, emerges as a potential solution. This study focuses on designing Gefitinib-loaded polymeric mixed micelles (GPMM) using poloxamer 407 and TPGS (D-alpha tocopherol PEG1000 succinate) for breast cancer therapy. In silico analyses unveil strong interactions between GEF- Bcl-2 and TPGS-Pgp-2 receptors, indicating efficacy against breast cancer. Molecular dynamics simulations offer insights into GEF and TPGS interactions within the micelles. Formulation optimization via Design of Experiment ensures particle size and entrapment efficiency within acceptable ranges. Characterization tools such as zeta sizer, ATR-FTIR, XRD, TEM, AFM, NMR, TGA, and DSC confirms particle size, structure, functional groups, and thermodynamic events. The optimized micelles exhibit a particle size of 22.34 ± 0.18 nm, PDI of 0.038 ± 0.009, and zeta potential of -0.772 ± 0.12 mV. HPLC determines 95.67 ± 0.34% entrapment efficiency and 1.05 ± 0.12% drug loading capacity. In-vitro studies with MDA-MB-231 cell lines demonstrate enhanced cytotoxicity of GPMM compared to free GEF, suggesting its potential in breast cancer therapy. Cell cycle analysis reveals apoptosis induction through key apoptotic proteins. Western blot results confirm GPMM's ability to trigger apoptosis in MDA-MB-231 cells by activating caspase-3, Bax, Bcl-2, and Parp. In conclusion, these polymeric mixed micelles show promise in selectively targeting cancer cells, warranting future in-vivo studies for optimized clinical application against breast cancer.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, INDIA
| | - Ankush Bansode
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, INDIA
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, INDIA
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, INDIA
| | - Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, INDIA
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, INDIA
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, INDIA
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, INDIA
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, INDIA.
| |
Collapse
|
9
|
Kaurav H, Tripathi M, Kaur SD, Bansal A, Kapoor DN, Sheth S. Emerging Trends in Bilosomes as Therapeutic Drug Delivery Systems. Pharmaceutics 2024; 16:697. [PMID: 38931820 PMCID: PMC11206586 DOI: 10.3390/pharmaceutics16060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been a notable surge in the utilization of stabilized bile acid liposomes, chemical conjugates, complexes, mixed micelles, and other drug delivery systems derived from bile acids, often referred to as bilosomes. The molecular structure and interactions of these amphiphilic compounds provide a distinctive and captivating subject for investigation. The enhanced stability of new generation bilosomes inside the gastrointestinal system results in the prevention of drug degradation and an improvement in mucosal penetration. These characteristics render bilosomes to be a prospective nanocarrier for pharmaceutical administration, prompting researchers to investigate their potential in other domains. This review paper discusses bilosomes that have emerged as a viable modality in the realm of drug delivery and have significant promise for use across several domains. Moreover, this underscores the need for additional investigation and advancement in order to comprehensively comprehend the prospective uses of bilosomes and their effectiveness in the field of pharmaceutical administration. This review study explores the current scholarly attention on bilosomes as prospective carriers for drug delivery. Therapeutic areas where bilosomes have shown outstanding performance in terms of drug delivery are outlined in the graphical abstract.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Meenakshi Tripathi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company plc, Allegan, MI 49010, USA;
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
10
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
11
|
Guo F, Jiao Y, Ding W, Du Y, Luo S, Wang M, Wang Y, Wu F, Wang L, Yang G. Synergistic effects of multidrug/material combination deliver system for anti-mutidrug-resistant tumor. Int J Pharm 2024; 649:123669. [PMID: 38056797 DOI: 10.1016/j.ijpharm.2023.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Multidrug resistance (MDR) is a public health issue of particular concern, for which nanotechnology-based multidrug delivery systems are considered among the most effective suppressive strategies for such resistance in tumors. However, for such strategies to be viable, the notable shortcomings of reduced loading efficiency and uncontrollable drug release ratio need to be addressed. To this end, we developed a novel "multidrug/material" co-delivery system, using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, P-gp efflux pump inhibitor) and poly(amidoamine) (PAMAM) to fabricate a precursor material with the properties of reversing MDR and having a long-cycle. Further, to facilitate multidrug co-delivery, we loaded doxorubicin(Dox) and curcumin(Cur, cardiotoxicity modifier and P-gp inhibitor) into PAMAM-TPGS nano-micelles respectively, and mixed in appropriate proportions. The multidrug/material co-delivery system thus obtained was characterized by high drug loading and a controllable drug release ratio in the physiological environment. More importantly, in vitro and in vivo pharmacodynamic studies indicated that the multidrug/material co-delivery system facilitated the reversal of MDR. Moreover, the system has increased anti-tumor activity and is biologically safe. We accordingly propose that the "multidrug/material" co-delivery system developed in this study could serve as a potential platform for reversing MDR and achieving safe and effective clinical treatment.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunlong Jiao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenqin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Sherif AY, Harisa GI, Alanazi FK. The Chimera of TPGS and Nanoscale Lipid Carriers as Lymphatic Drug Delivery Vehicles to Fight Metastatic Cancers. Curr Drug Deliv 2024; 21:525-543. [PMID: 37183467 DOI: 10.2174/1567201820666230512122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGSengineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
14
|
Zakaria MY, Abd El-Halim SM, Beshay BY, Zaki I, Abourehab MA. 'Poly phenolic phytoceutical loaded nano-bilosomes for enhanced caco-2 cell permeability and SARS-CoV 2 antiviral activity': in-vitro and insilico studies. Drug Deliv 2023; 30:2162157. [PMID: 36587813 PMCID: PMC9809390 DOI: 10.1080/10717544.2022.2162157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) predisposed to the emergence of worldwide catastrophe that impels the evolution of safe and effective therapeutic system. Polyphenols as resveratrol (RSV) exhibit a well evidenced antiviral activity. Unfortunately, like most phenolic nutraceuticals, RSV suffers from restrained solubility and massive degradation in GIT and liver which in turn prohibit its clinical use. Herein, PEGylated bilosomes (PBs) contain PEGylated edge activator along with the traditional components as (Span 60, cholesterol and bile salts) were proposed to boost both permeability and bioavailability of RSV. The investigation of the prominent effect of the diverse variables on the characteristics of the vesicles and picking of the optimum formula were conducted via construction of 23 factorial experiment. The appraisal of the formulae was conducted on the basis of entrapment efficiency percent (EE%), particle size (PS) and zeta potential (ZP). In addition, the spherical shaped optimal formula (F5) exhibited EE% of 86.1 ± 2.9%, PS of 228.9 ± 8.5 nm, and ZP of -39.8 ± 1.3 mV. The sorted optimum formula (F5) exhibited superior dissolution behaviors, and boosted Caco-2 cells cellular uptake by a round 4.7 folds relative to RSV dispersion. In addition, F5 demonstrated a complete in vitro suppression of SARS-CoV-2 at a concentration 0.48 μg/ml with 6.6 times enhancement in antiviral activity relative to RSV dispersion. The accomplished molecular modeling heavily provided proof for the possible interactions of resveratrol with the key residues of the SARS-CoV2 Mpro enzyme. Finally, F5 could be proposed as a promising oral panel of RSV for curation from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mohamed Y. Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr, Egypt,CONTACT Mohamed Y. Zakaria ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Botros Y. Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed A.S Abourehab
- Department of Pharmaceutics Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabi
| |
Collapse
|
15
|
Zakaria MY, Sharaky M, Noreddin AM, Alnajjar R, El-Shesheny R, Kutkat O, El-Beeh ME, Abourehab MAS, Al-Karmalawy AA. Investigating the superiority of chitosan/D-alpha-tocopheryl polyethylene glycol succinate binary coated bilosomes in promoting the cellular uptake and anti-SARS-CoV-2 activity of polyphenolic herbal drug candidate. Int J Pharm 2023; 646:123385. [PMID: 37678473 DOI: 10.1016/j.ijpharm.2023.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The evolution of a safe and effective therapeutic system to conquer SAR-CoV-2 infection deemed to be a crucial worldwide demand. Curcumin (CUR) is a phytomedicinal polyphenolic drug that exhibited a well-reported anti-SAR-CoV-2. However, the therapeutic activity of CUR is hindered by its poor intestinal permeability and diminished aqueous solubility. Therefore, this study strived to develop D-alpha-tocopheryl polyethylene glycol succinate (TPGS) bilosomes (TPGS-Bs) adopting 23 full factorial designs to improve solubility and intestinal permeability of CUR, hence boosting its anti-SARS-CoV-2 activity. Eight experimental runs were attained considering three independent variables: soybean phosphatidylcholine amount (mg) (SPC amount), bile salt amount (mg) (BS amount), and TPGS amount (mg). The optimum formula (F4) exhibited EE % (88.5 ± 2.4 %), PS (181.5 ± 21.6 nm), and ZP (-34.5 ± 3.7 mV) with desirability value = 0.739 was picked as an optimum formula. Furthermore, the optimum formula (F4) was extra coated with chitosan (CS) to improve permeability and anti-SAR-CoV-2 activity. Caco-2 cell uptake after 2 hr revealed the superiority of CS-F4 and F4 by 6 and 5 folds relative to CUR dispersion, respectively. Furthermore, CS-F4 exhibited a significantly higher anti-SARS-CoV-2 activity with IC50 (0.24 µg/ml) by 8.3 times than F4 (1.99 µg/ml). Besides, the mechanistic study demonstrated that the two formulae imparted antiviral activity by inhibiting the spike protein by virucidal potentialities. In addition, the conducted molecular docking and MD simulations towards the SARS-CoV-2 Mpro enzyme confirmed the interaction of CUR with key residues of the virus enzymes. Based on the preceded, CS-F4 could be assumed to be used to effectively eradicate SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr 46612, South Sinai, Egypt.
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Ayman M Noreddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Internal Medicine, School of Medicine, University of California -Irvine, USA
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya; PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya; Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Institute, National Research Centre, Dokki-Giza 12622, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Institute, National Research Centre, Dokki-Giza 12622, Egypt
| | - Mohamed E El-Beeh
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
16
|
Zakaria MY, Eraqi WA, Mohamed SA. Ultra-deformable free fatty acid based nano-carriers for topical delivery of Luteolin: A potential paradigm for management of Methicillin-Resistant Staphylococcus aureus skin infections. Int J Pharm 2023; 643:123259. [PMID: 37479100 DOI: 10.1016/j.ijpharm.2023.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The incidences of antimicrobial resistance in particular, Methicillin-Resistant Staphylococcus aureus (MRSA) have increased during the last two decades. However, conventional dosage forms are unable to evade the barrier effect of the stratum corneum to permit deep penetration of the skin to resolve deep skin infections. There is, therefore, an urgent need for an advanced drug delivery system. Thus the study reported herein was aimed to fabricate a novasome-loaded luteolin (LUT) to improve its topical delivery and to enhance its antibacterial activity. The system was investigated for the impact of the type of surfactant, stearic acid concentration (g %), cholesterol amount (mg) and Brij 52 amount (mg) on the percent entrapment efficiency, particle size, poly-dispersity index and zeta potential. Statistical optimization of these factors was conducted using the Design-Expert® software. The optimum formulation was further in-vitro characterized by release study, differential scanning calorimetry, transmission electron microscope, x-ray diffraction and antibacterial activity. Formulation F2 composed of Span 60, 0.4 g % of stearic acid, 100 mg cholesterol and 30 mg Brij 52 was selected as the optimum formula based on the highest desirability value (0.634). F2 demonstrated enhanced antimicrobial activity with lower minimum inhibitory concentrations against a panel of MRSA clinical isolates when compared to LUT dispersion. Furthermore, the F2 formula exhibited higher anti-virulence activity by effectively inhibiting biofilm formation and suppressing α-hemolysin activity in MRSA isolates. It also demonstrated improved biosafety based on cytotoxicity assessment on human skin fibroblasts (HSF). Finally, when assessed in an in vivo skin infection mouse model, the F2 formula and commercially available fusidic acid preparation significantly reduced the microbial load of infected skin lesions compared to both the negative control and LUT dispersion-treated groups. Based on the aforementioned results, the validity of novasomes as a nano-carrier to boost in vitro and in vivo anti-MRSA activity of LUT could be affirmed.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Department of pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr 46612, South Sinai, Egypt.
| | - Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Sally A Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
17
|
Abo Elmaaty A, Al-Karmalawy AA, Nafie MS, Shamaa MM, Zaki I, Alnajjar R, Zakaria MY. Experimental Design of D-α-tocopherol polyethylene glycol 1000 succinate Stabilized Bile Salt Based Nano-vesicles for Improved Cytotoxicity and Bioavailability of Colchicine Binding Site Inhibitor Candidates: In Vitro, In silico, and Pharmacokinetic Studies. Int J Pharm 2023; 640:122980. [PMID: 37116601 DOI: 10.1016/j.ijpharm.2023.122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Nowadays, conventional anticancer therapy suffers many pitfalls, including drastic side effects and limited therapeutic efficacy resulting from diminished oral bioavailability. So, in an attempt to enhance their poor solubility and oral bioavailability along with the cytotoxic activity, the developed lead compounds (C1 and C2) were loaded in D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) modified vesicles adopting thin film hydration technique. The formulations of the aforementioned candidates (F1 and F2, respectively) were elected as the optimum formula with desirability values of 0.701 and 0.618, respectively. Furthermore, an outstanding enhancement in the drug's cytotoxic activity against different cancer cell lines (MCF-7, HepG-2, MDA-MB-321, A375, and MGC-803) after being included in the nano-TPGS-modified optimum formula was noticed relative to the unformulated compounds. The formula F1 showed the best cytotoxic activities against HepG-2 with an IC50 = 3 µM. Furthermore, regarding MCF-7, F1 was shown to be the most potent and protective among all the tested formulations with an IC50 = 6 µM. Besides, F1 exerted the best caspase 3/7 activity stimulation (around a 5-folds increase) compared to control in the MCF-7 cell line. Notably, it was disclosedthat both C1 and C2 induced cell cycle arrest at the resting S growth phase. Moreover, C1 and C2 decreased tubulin concentrations by approximately 2-folds and 6-folds, respectively. Meanwhile, the conducted molecular docking studies ensure the eligible binding affinities of the assessed compounds. Besides, MD simulations were performed for 1000 ns to confirm the docking results and study the exact behavior of the target candidates (C1 and C2) toward the CBS.
Collapse
Affiliation(s)
- Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Marium M Shamaa
- Biochemistry Department, Clinical and biological sciences division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt.
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya; PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya; Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612 South Sinai, Egypt.
| |
Collapse
|
18
|
Zhang J, Sun J, Li C, Qiao H, Hussain Z. Functionalization of curcumin nanomedicines: a recent promising adaptation to maximize pharmacokinetic profile, specific cell internalization and anticancer efficacy against breast cancer. J Nanobiotechnology 2023; 21:106. [PMID: 36964547 PMCID: PMC10039588 DOI: 10.1186/s12951-023-01854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Owing to its diverse heterogeneity, aggressive nature, enormous metastatic potential, and high remission rate, the breast cancer (BC) is among the most prevalent types of cancer associated with high mortality. Curcumin (Cur) is a potent phytoconstituent that has gained remarkable recognition due to exceptional biomedical viability against a wide range of ailments including the BC. Despite exhibiting a strong anticancer potential, the clinical translation of Cur is restricted due to intrinsic physicochemical properties such as low aqueous solubility, chemical instability, low bioavailability, and short plasma half-life. To overcome these shortcomings, nanotechnology-aided developments have been extensively deployed. The implication of nanotechnology has pointedly improved the physicochemical properties, pharmacokinetic profile, cell internalization, and anticancer efficacy of Cur; however, majority of Cur-nanomedicines are still facing grandeur challenges. The advent of various functionalization strategies such as PEGylation, surface decoration with different moieties, stimuli-responsiveness (i.e., pH, light, temperature, heat, etc.), tethering of specific targeting ligand(s) based on the biochemical targets (e.g., folic acid receptors, transferrin receptors, CD44, etc.), and multifunctionalization (multiple functionalities) has revolutionized the fate of Cur-nanomedicines. This study ponders the biomedical significance of various Cur-nanomedicines and adaptable functionalizations for amplifying the physicochemical properties, cytotoxicity via induction of apoptosis, cell internalization, bioavailability, passive and active targeting to the tumor microenvironment (TME), and anticancer efficacy of the Cur while reversing the multidrug resistance (MDR) and reoccurrence in BC. Nevertheless, the therapeutic outcomes of Cur-nanomedicines against the BC have been remarkably improved after adaptation of various functionalizations; however, this evolving strategy still demands extensive research for scalable clinical translation.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China.
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haizhi Qiao
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Abdel-moneum R, Abdel-Rashid RS. Bile salt stabilized nanovesicles as a promising drug delivery technology: A general overview and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zakaria MY, Zaki I, Alhomrani M, Alamri AS, Abdulaziz O, Abourehab MAS. Boosting the anti MERS-CoV activity and oral bioavailability of resveratrol via PEG-stabilized emulsomal nano-carrier: Factorial design, in-vitro and in-vivo assessments. Drug Deliv 2022; 29:3155-3167. [PMID: 36168279 PMCID: PMC9543103 DOI: 10.1080/10717544.2022.2126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is a phytoceutical polyphenolic compound exhibiting a well evidenced wide range of therapeutic activities. Unfortunately, its diminished aqueous solubility and extensive metabolism in gastro intestinal tract (GIT) and liver prohibit its biological activity and systemic availability. Herein the conducted study PEG stabilized emulsomes (PEMLs) were customized to enclose RSV aiming to boost its biological availability and antiviral activity. PEGylating the vesicles not only grant the promoted steric stability of the system but also being beneficial in exaggerating the intestinal permeability and extending the period of circulation of the drug, hence its targeted clinical use. The Investigation of the influence of predetermined variables on the physical characterization of formulae (entrapment efficiency EE%, particle size PS and zeta potential ZP) was implemented utilizing Design Expert® software. (F4) with desirability value (0.772), picked to be the optimal formula, which is fabricated utilizing 35 mg compritol as the lipidic core and 60 mg 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-Mpeg-2000). The dominance of the F4 relative to RSV dispersion was affirmed by the data acquired from ex-vivo and pharmacokinetic studies. In addition, F4 exhibited significant lower EC50 value (0.0127 µg/mL) relative to that of RSV dispersion(0.338 µg/mL) by around 26 times denoting the capability of the formulation to boost the antiviral activity. To a great extent, F4 was able to significantly suppress the inflammatory response and oxidative stress resulted from MERS-CoV infection on comparison with RSV dispersion. Finally, the potentiality of PEMLs as nano-panel with boosted both antiviral and oral bioavailability for RSV could be deduced based on the outcomes mentioned herein.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabi.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
21
|
Deng P, Athary Abdulhaleem M F, Masoud RE, Alamoudi WM, Zakaria MY. “Employment of PEGylated ultra-deformable transferosomes for transdermal delivery of tapentadol with boosted bioavailability and analgesic activity in post-surgical pain”. Int J Pharm 2022; 628:122274. [DOI: 10.1016/j.ijpharm.2022.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
|
22
|
Bhattacharya S, Sharma S, Prajapati BG. Development of D-α-Tocopherol polyethylene glycol 1000 succinate fabricated nanostructural lipid carrier of sorafenib tosylate for metastatic colorectal targeting application: Stability, physical characterization, cytotoxicity, and apoptotic studies against SW48 cells PTEN. Front Oncol 2022; 12:990841. [DOI: 10.3389/fonc.2022.990841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
The study aimed to create D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) nanostructured lipid carriers (NLC) of sorafenib tosylate (ST) as lymphatic delivery systems (LDDS) to fight Metastatic colorectal cancer. Initially, ST-SLN, ST-NLC, and ST-LNE were formulated considering oleic acid (OA), glycerol monolinoleate (GMO), glycerol monolinoleate (GML) as solid lipid and further characterised, and tested for stability. The most stable ST-NLC was fabricated with TPGS to produce ST-TPGS-NLC and evaluated by performing in vitro drug profiling, in vitro cytotoxicity, and apoptotic studies against human female colorectal adenocarcinoma cell lines (SW48 Cells PTEN). Stability studies on three lipidic nanoparticles (ST-SLN, ST-NLC, ST-LEN) showed particle size, polydispersity index, and zeta potential ranging from 165 nm to 298 nm, 0.125 to 0.288, and -31 mV to -16 mV. At 1600 minutes, more than 80% of ST-NLC1 was released, confirming the sustained release pattern of the formulation. ST-NLC and ST-TPGS-NLC have entrapment efficiencies above 50%. Pure ST’s IC50 at 72 hr was 3.45 µg/mL, while 1.56 µg/mL was for ST-TPGS-NLC. The ST-TPGS-NLC reduced the number of livings SW48 Cells PTEN from 91% to 5%, compared to 75% to 8% of pure ST. The ST-TPGS-NLC is a promising LDDS for delivering ST for metastatic colorectal cancer.
Collapse
|
23
|
Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomedicine 2022; 17:4861-4877. [PMID: 36262189 PMCID: PMC9574265 DOI: 10.2147/ijn.s382192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bioavailability is an eternal topic that cannot be circumvented by peroral drug delivery. Adequate blood drug exposure after oral administration is a prerequisite for effective treatment. Nanovesicles as pleiotropic oral vehicles can solubilize, encapsulate, stabilize an active ingredient and promote the payload absorption via various mechanisms. Vesicular systems with nanoscale size, such as liposomes, niosomes and polymersomes, provide a versatile platform for oral delivery of drugs with distinct nature. The amphiphilicity of vesicles in structure allows hydrophilic and lipophilic molecule(s) either or both to be loaded, being encapsulated in the aqueous cavity or the inner core, respectively. Depending on high oral transport efficiency based on their structural flexibility, gastrointestinal stability, biocompatibility, and/or intestinal epithelial affinity, nanovesicles can markedly augment the oral bioavailability of various poorly absorbed drugs. Vesicular drug delivery systems (VDDSs) demonstrate a lot of preferences and are becoming more prominent of late years in biomedical applications. Equally, these systems can potentiate a drug's therapeutic index by ameliorating the oral absorption. This review devotes to comment on various VDDSs with special emphasis on the peroral drug delivery. The classification of nanovesicles, preparative processes, intestinal transport mechanisms, in vivo fate, and design rationale were expounded. Knowledge on vesicles-mediated oral drug delivery for bioavailability enhancement has been properly provided. It can be concluded that VDDSs with many merits will step into an energetic arena in oral drug delivery.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Correspondence: Shiping Zhu, Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|