1
|
Jia Y, Li Y, Wang M, Wang F, Liu Q, Song Z. Lecithin-based mixed polymeric micelles for activity improvement of curcumin against Staphylococcus aureus. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-18. [PMID: 39460953 DOI: 10.1080/09205063.2024.2421089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Considering cellular uptake promotion of lecithin and high expression of phospholipase in S. aureus, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti-S. aureus activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-S. aureus activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.
Collapse
Affiliation(s)
- Yunjing Jia
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Yuli Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Mingzhu Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Fuyou Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Qingmin Liu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Cui T, Xu F, Wang J, Li W, Gao Y, Li X, Yang K, Zhang W, Ge F, Tao Y. Polydopamine Nanocarriers with Cascade-Activated Nitric Oxide Release Combined Photothermal Activity for the Therapy of Drug-Resistant Bacterial Infections. ACS Infect Dis 2024; 10:2018-2031. [PMID: 38743862 DOI: 10.1021/acsinfecdis.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antibiotic abuse leads to increased bacterial resistance, and the surviving planktonic bacteria aggregate and secrete extracellular polymers to form biofilms. Conventional antibacterial agents find it difficult to penetrate the biofilm, remove the bacteria wrapped in it, and produce an excellent therapeutic effect. In this study, a dual pH- and NIR-responsive nanocomposite (A-Ca@PDA) was developed to remove drug-resistant bacteria through a cascade of catalytic nitric oxide (NO) release and photothermal clearance. NO can melt in the outer package of the biofilm, facilitating the nanocomposites to have better permeability. Thermal therapy further inhibits the growth of planktonic bacteria. The locally generated high temperature and the burst release of NO together aggravate the biofilm collapse and bacterial death after NIR irradiation. The nanocomposites achieved a remarkable photothermal conversion efficiency of 47.5%, thereby exhibiting significant advancements in energy conversion. The nanocomposites exhibited remarkable efficacy in inhibiting multidrug-resistant (MDR) Escherichia coli and MDR Staphylococcus aureus, thus achieving an inhibition rate of >90%. Moreover, these nanocomposites significantly improved the wound-healing process in the MDR S. aureus-infected mice. Thus, this novel nanocomposite offers a novel strategy to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
3
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Feng Y, Bian J, Yu G, Zhao P, Yue J. Quaternary ammonium-tethered hyperbranched polyurea nanoassembly synergized with antibiotics for enhanced antimicrobial efficacy. Biomater Sci 2024; 12:1185-1196. [PMID: 38226542 DOI: 10.1039/d3bm01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The effective transportation of antibiotics to bacteria embedded within a biofilm consisting of a dense matrix of extracellular polymeric substances is still a challenge in the treatment of bacterial biofilm associated infections. Here, we developed an antibiotic nanocarrier constructed from quaternary ammonium-tethered hyperbranched polyureas (HPUs-QA), which showed high loading capacity for a model antibiotic, rifampicin, and high efficacy in the transportation of rifampicin to biofilms. The rifampicin-loaded HPUs-QA nanoassembly (HPUs-Rif/QA) demonstrated a synergistic antimicrobial effect in killing planktonic bacteria and eradicating the corresponding biofilms. Compared to the treatment of bacteria-infected chronic wounds by either HPUs-QA or rifampicin alone, HPUs-Rif/QA showed superior efficacy in promoting wound healing by more effectively inhibiting bacteria colonization. This study highlights the potential of the HPUs-QA nanoassembly in synergistic action with antibiotics for the treatment of biofilm associated infections.
Collapse
Affiliation(s)
- Yanwen Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiang Bian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Guoyi Yu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Pei Zhao
- Laboratory Animal Center, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
5
|
Xu Y, Bao L, Cao S, Pang B, Zhang J, Zhang Y, Chen M, Wang Y, Sun Q, Zhao R, Guo S, Sun J, Cui X. Pharmacological effects and mechanism of Maxing Shigan decoction in the treatment of Pseudomonas aeruginosa pneumonia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117424. [PMID: 37984543 DOI: 10.1016/j.jep.2023.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maxing Shigan Decoction (MXSG) is a traditional Chinese Medicine effectively used in respiratory infections and bacterial pneumonia. However, the mechanism of MXSG treating acute Pseudomonas aeruginosa (P. aeruginosa) pneumonia is still unclear. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of MXSG on acute P. aeruginosa pneumonia and explore its potential mechanisms. MATERIALS AND METHODS HPLC-MS analysis was performed to analyze the chemical composition. Antibacterial effects in vitro were evaluated by minimum inhibitory concentration (MIC). Forty-five male BALB/c mice were divided into control group, model group, levofloxacin group, MXSG-L (7.7 g/kg/d), and MXSG-H group (15.4 g/kg/d). Mice were intranasal instillation with P. aeruginosa to induce acute P. aeruginosa pneumonia model. Levofloxacin and MXSG were administered by oral gavage once a day. After 3 days of treatment, the lung index measurement, micro-CT, arterial blood gas analysis, bacteria load determination, and HE staining were performed. Network pharmacological analysis and transcriptome sequencing were employed to predict the potential mechanisms of MXSG on bacterial pneumonia. The expressions of relating genes were detected by immunofluorescence, Western blot, and RT-PCR. RESULTS In vitro, MIC of P. aeruginosa is greater than 500 mg/mL. In the treatment of acute P. aeruginosa pneumonia model, MXSG significantly improved body weight loss, lung index, and pulmonary lesions. MXSG treatment also reduced the bacterial load and ameliorated oxygen saturation significantly. Transcriptomes, immunofluorescence, Western blot, and RT-PCR analysis showed MXSG treating acute P. aeruginosa pneumonia through the IL-17 signaling pathway and HIF-1α/IL-6/STAT3 signaling pathway. CONCLUSIONS We demonstrated the efficacy and mechanism of MXSG in the treatment of acute P. aeruginosa pneumonia, which provides a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiyue Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Simsekli O, Bilinmis I, Celik S, Arık G, Baba AY, Karakucuk A. Advancing biofilm management through nanoformulation strategies: a review of dosage forms and administration routes. J Drug Target 2023; 31:931-949. [PMID: 37831630 DOI: 10.1080/1061186x.2023.2270619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Biofilms are complex microbial communities formed by the attachment of bacteria or fungi to surfaces encased in a self-produced polymeric matrix. These biofilms are highly resistant to conventional antimicrobial therapies. The resistance mechanisms exhibited by biofilms include low antibiotic absorption, sluggish replication, adaptive stress response, and the formation of dormant-like phenotypes. The eradication of biofilms requires alternative strategies and approaches. Nanotechnological drug delivery systems allow excellent control over the drug chemistry, surface area, particle size, particle shape, and composition of nanostructures. Nanoformulations can enhance the efficacy of antimicrobial agents by improving their bioavailability, stability, and targeted delivery to the site of infection that helps biofilm eradication more effectively. In addition to nanoformulations, the route of administration and choice of dosage forms play a crucial role in treating biofilm infections. Systemic administration of antibiotics is effective in controlling systemic infection and sepsis associated with biofilms. Alternative routes of administration, such as inhalation, vaginal, ocular, or dermal, have been explored to target biofilm infections in specific organs. This review primarily examines the utilisation of nanoformulations in various administration routes for biofilm management. It also provides an overview of biofilms, current approaches, and the drawbacks associated with conventional methods.
Collapse
Affiliation(s)
- Oyku Simsekli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Irfan Bilinmis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Gizem Arık
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Abdullah Yucel Baba
- Vocational School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Alptug Karakucuk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
7
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
8
|
Makhlouf Z, Ali AA, Al-Sayah MH. Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. Antibiotics (Basel) 2023; 12:antibiotics12050875. [PMID: 37237778 DOI: 10.3390/antibiotics12050875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
All currently approved antibiotics are being met by some degree of resistance by the bacteria they target. Biofilm formation is one of the crucial enablers of bacterial resistance, making it an important bacterial process to target for overcoming antibiotic resistance. Accordingly, several drug delivery systems that target biofilm formation have been developed. One of these systems is based on lipid-based nanocarriers (liposomes), which have shown strong efficacy against biofilms of bacterial pathogens. Liposomes come in various types, namely conventional (charged or neutral), stimuli-responsive, deformable, targeted, and stealth. This paper reviews studies employing liposomal formulations against biofilms of medically salient gram-negative and gram-positive bacterial species reported recently. When it comes to gram-negative species, liposomal formulations of various types were reported to be efficacious against Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and members of the genera Klebsiella, Salmonella, Aeromonas, Serratia, Porphyromonas, and Prevotella. A range of liposomal formulations were also effective against gram-positive biofilms, including mostly biofilms of Staphylococcal strains, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus subspecies bovis, followed by Streptococcal strains (pneumonia, oralis, and mutans), Cutibacterium acnes, Bacillus subtilis, Mycobacterium avium, Mycobacterium avium subsp. hominissuis, Mycobacterium abscessus, and Listeria monocytogenes biofilms. This review outlines the benefits and limitations of using liposomal formulations as means to combat different multidrug-resistant bacteria, urging the investigation of the effects of bacterial gram-stain on liposomal efficiency and the inclusion of pathogenic bacterial strains previously unstudied.
Collapse
Affiliation(s)
- Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Amaal Abdulraqeb Ali
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Hussein Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|