1
|
Qiu J, Jiang Y, Ye N, Jin G, Shi H, Qian D. Leveraging the intratumoral microbiota to treat human cancer: are engineered exosomes an effective strategy? J Transl Med 2024; 22:728. [PMID: 39103887 DOI: 10.1186/s12967-024-05531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer remains a leading cause of global mortality. The tumor microbiota has increasingly been recognized as a key regulator of cancer onset and progression, in addition to shaping tumor responses to immunotherapy. Microbes, including viruses, bacteria, fungi, and other eukaryotic species can impact the internal homeostasis and health of humans. Research focused on the gut microflora and the intratumoral microbiome has revolutionized the current understanding of how tumors grow, progress, and resist therapeutic interventions. Even with this research, however, there remains relatively little that is known with respect to the abundance of microbes and their effects on tumors and the tumor microenvironment. Engineered exosomes are a class of artificial extracellular nanovesicles that can actively transport small molecule drugs and nucleic acids, which have the broad prospects of tumor cell therapy. The present review offers an overview of recent progress and challenges associated with the intratumoral microbiome and engineered exosomes in the context of cancer research. These discussions are used to inform the construction of a novel framework for engineered exosome-mediated targeted drug delivery, taking advantage of intratumoral microbiota diversity as a strategic asset and thereby providing new opportunities to more effectively treat and manage cancer in the clinic.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Gan Jin
- Department of Vascular Hernia Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Hao Shi
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, Jiangsu Province, 215500, China
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People ' s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| |
Collapse
|
2
|
Endo R, Ueda T, Nagaoki T, Shima N, Sato Y, Harashima H, Nakamura T. Impact of in vivo fate of STING agonist-loaded lipid nanoparticles on antitumor immunity. J Control Release 2024; 372:609-618. [PMID: 38942082 DOI: 10.1016/j.jconrel.2024.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Therapeutically manipulating the stimulator of interferon genes (STING) pathway has promising potential for enhancing antitumor immunity. Agonists of this pathway (STING agonists) are being evaluated in clinical trials. Loading the STING agonists into lipid nanoparticles (LNPs) increases their safety and efficacy. We previously developed STING agonists loaded LNPs consisting of the ionizable lipid YSK12-C4 (YSK12-LNPs), which showed significant antitumor effects. However, it is largely unclear how the in vivo fate of STING agonists loaded LNPs affects the antitumor immune responses. In this study, we compared the YSK12-LNPs with LNPs composed of DLin-MC3-DMA (MC3-LNPs) showing different in vivo fates. Biodistribution and flow cytometry analyses of mouse tissues revealed that the MC3-LNPs delivered higher amounts of STING agonists to the liver than the YSK12-LNPs. Additionally, significantly more liver leukocytes internalized the MC3-LNPs than the YSK12-LNPs. In contrast, the YSK12-LNPs delivered higher amounts of STING agonists to the liver leukocytes than the MC3-LNPs, leading to the effective induction of innate immunity and inflammation in the tumors. However, the antitumor effects in the B16-F10 lung metastasis and CT26 tumor models were comparable. Interestingly, flow cytometry analyses suggested that the YSK12-LNPs were more likely to activate natural killer cells and M1 macrophages, while the MC3-LNPs were more likely to activate CD8+ T cells. Our data suggest that different antitumor immune response mechanisms may operate depending on the characteristics and distribution of the LNPs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Natsumi Shima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
3
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting. J Control Release 2024; 370:516-527. [PMID: 38718875 DOI: 10.1016/j.jconrel.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
4
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
5
|
Khalifa AM, Nakamura T, Sato Y, Harashima H. Vaccination with a combination of STING agonist-loaded lipid nanoparticles and CpG-ODNs protects against lung metastasis via the induction of CD11b highCD27 low memory-like NK cells. Exp Hematol Oncol 2024; 13:36. [PMID: 38553761 PMCID: PMC10981311 DOI: 10.1186/s40164-024-00502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are effective in attacking tumor cells that escape T cell attack. Memory NK cells are believed to function as potent effector cells in cancer immunotherapy. However, knowledge of their induction, identification, and potential in vivo is limited. Herein, we report on the induction and identification of memory-like NK cells via the action of a combination of a stimulator of interferon genes (STING) agonist loaded into lipid nanoparticles (STING-LNPs) and cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG-ODNs), and the potential of the inducted memory-like NK cells to prevent melanoma lung metastasis. METHODS The antitumor effects of either the STING-LNPs, CpG-ODNs, or the combination therapy were evaluated using a B16-F10 lung metastasis model. The effect of the combined treatment was evaluated by measuring cytokine production. The induction of memory-like NK cells was demonstrated via flow cytometry and confirmed through their preventative effect. RESULTS The combination of STING-LNPs and CpG-ODNs tended to enhance the production of interleukin 12 (IL-12) and IL-18, and exerted a therapeutic effect against B16-F10 lung metastasis. The combination therapy increased the population of CD11bhighCD27low NK cells. Although monotherapies failed to show preventative effects, the combination therapy induced a surprisingly strong preventative effect, which indicates that CD11bhighCD27low cells could be a phenotype of memory-like NK cells. CONCLUSION As far as could be ascertained, this is the first report of the in vivo induction, identification, and confirmation of a phenotype of the memory-like NK cells through a prophylactic effect via the use of an immunotherapeutic drug. Our findings provide novel insights into the in vivo induction of CD11bhighCD27low memory-like NK cells thus paving the way for the development of efficient immunotherapies.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Hokkaido, Japan.
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Hokkaido, Japan.
| |
Collapse
|
6
|
Paun RA, Jurchuk S, Tabrizian M. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. Bioeng Transl Med 2024; 9:e10601. [PMID: 38435821 PMCID: PMC10905562 DOI: 10.1002/btm2.10601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024] Open
Abstract
Lipid nanoparticles (LNPs) are biocompatible drug delivery systems that have found numerous applications in medicine. Their versatile nature enables the encapsulation and targeting of various types of medically relevant molecular cargo, including oligonucleotides, proteins, and small molecules for the treatment of diseases, such as cancer. Cancers that form solid tumors are particularly relevant for LNP-based therapeutics due to the enhanced permeation and retention effect that allows nanoparticles to accumulate within the tumor tissue. Additionally, LNPs can be formulated for both locoregional and systemic delivery depending on the tumor type and stage. To date, LNPs have been used extensively in the clinic to reduce systemic toxicity and improve outcomes in cancer patients by encapsulating chemotherapeutic drugs. Next-generation lipid nanoparticles are currently being developed to expand their use in gene therapy and immunotherapy, as well as to enable the co-encapsulation of multiple drugs in a single system. Other developments include the design of targeted LNPs to specific cells and tissues, and triggerable release systems to control cargo delivery at the tumor site. This review paper highlights recent developments in LNP drug delivery formulations and focuses on the treatment of solid tumors, while also discussing some of their current translational limitations and potential opportunities in the field.
Collapse
Affiliation(s)
- Radu A. Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Jurchuk
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Faculty of Dentistry and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
7
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
8
|
Nakamura T, Sasaki S, Sato Y, Harashima H. Cancer Immunotherapy with Lipid Nanoparticles Loaded with a Stimulator of Interferon Genes Agonist against Renal Tumor Lung Metastasis. Pharmaceutics 2023; 16:31. [PMID: 38258042 PMCID: PMC10819482 DOI: 10.3390/pharmaceutics16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Metastatic renal cell carcinoma (RCC) has a poor prognosis, and the major organ of metastasis is the lung. Immunotherapy with immune checkpoint inhibitors (ICIs) is the first-line therapy, but the response rates are low. Thus, the development of a more effective immunotherapy against metastatic RCC would be highly desirable. We previously demonstrated how a stimulator of an interferon gene (STING) agonist-loaded lipid nanoparticles (STING-LNPs) significantly activates natural killer (NK) cells and induces an antitumor effect against cases of melanoma lung metastasis that have shown ICI resistance. In this study, we evaluated the potential of using STING-LNPs in the treatment of lung metastatic RCC (Renca). An intravenous injection of STING-LNPs drastically decreased the amount of Renca tumor colonies. In contrast, monotherapies using ICIs showed no antitumor effect, and even a combination of ICI and STING-LNP therapies failed to enhance the antitumor effects. The main effector cells would be NK cells, and the activation of NK cells by the STING-LNPs may avoid the increased expression of immune checkpoint molecules. These findings provide useful insights into the development of an effective immunotherapy against metastatic RCC.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
9
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
10
|
Chen S, Peng A, Chen M, Zhan M. Nanomedicines targeting activation of STING to reshape tumor immune microenvironment and enhance immunotherapeutic efficacy. Front Oncol 2023; 12:1093240. [PMID: 36741735 PMCID: PMC9890065 DOI: 10.3389/fonc.2022.1093240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy has greatly enhanced the effectiveness of cancer treatments, but the efficacy of many current immunotherapies is still limited by the tumor-suppressive immune microenvironment. Multiple studies have shown that activating the stimulation of IFN genes (STING) pathway and inducing innate immunity can significantly impact the tumor immune microenvironment and improve antitumor therapy. While natural or synthetic STING agonists have been identified or developed for preclinical and clinical use, small molecule agonists have limited utility due to degradation and lack of targeting. As such, the delivery and release of STING agonists into tumor tissue is a major challenge that must be addressed in order to further advance the use of STING agonists. To address this challenge, various nanomedicines have been developed. In this paper, we concisely review the antitumor immunotherapeutic mechanisms of STING agonists, highlighting the latest developments in STING agonists and the current progress of nanomedicines for activating STING. We classify the different nanomedicines according to the STING agonists they utilize in order to facilitate understanding of recent advances in this field. Finally, we also discuss the prospects and challenges of this field.
Collapse
Affiliation(s)
- Shanshan Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Anghui Peng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Muhe Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,*Correspondence: Muhe Chen, ; Meixiao Zhan,
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,*Correspondence: Muhe Chen, ; Meixiao Zhan,
| |
Collapse
|
11
|
John C, Jain K, Masanam HB, Narasimhan AK, Natarajan A. Recent Trends and Opportunities for the Targeted Immuno-Nanomaterials for Cancer Theranostics Applications. MICROMACHINES 2022; 13:2217. [PMID: 36557516 PMCID: PMC9781111 DOI: 10.3390/mi13122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The targeted delivery of cancer immunotherapies has increased noticeably in recent years. Recent advancements in immunotherapy, particularly in blocking the immune checkpoints (ICs) axis, have shown favorable treatment outcomes for multiple types of cancer including melanoma and non-small-cell lung cancer (NSLC). Engineered micromachines, including microparticles, and nanoplatforms (organic and inorganic), functionalized with immune agonists can effectively deliver immune-targeting molecules to solid tumors. This review focuses on the nanomaterial-based strategies that have shown promise in identifying and targeting various immunological markers in the tumor microenvironment (TME) for cancer diagnosis and therapy. Nanomaterials-based cancer immunotherapy has improved treatment outcomes by triggering an immune response in the TME. Evaluating the expression levels of ICs in the TME also could potentially aid in diagnosing patients who would respond to IC blockade therapy. Detecting immunological checkpoints in the TME using noninvasive imaging systems via tailored nanosensors improves the identification of patient outcomes in immuno-oncology (IO). To enhance patient-specific analysis, lab-on-chip (LOC) technology is a rapid, cost-effective, and accurate way of recapitulating the TME. Such novel nanomaterial-based technologies have been of great interest for testing immunotherapies and assessing biomarkers. Finally, we provide a perspective on the developments in artificial intelligence tools to facilitate ICs-based nano theranostics toward cancer immunotherapy.
Collapse
Affiliation(s)
- Clyde John
- Department of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kaahini Jain
- Department of Neuroscience, Boston University, Boston, MA 02215, USA
| | - Hema Brindha Masanam
- Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ashwin Kumar Narasimhan
- Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|