1
|
Basim P, Shah HS, Sedlock R, Parekh BV, Dave RH. Material-Sparing Approach to Predict Tablet Capping Under Processing Compression Conditions Based on Mechanical and Molecular Properties Derived from Compaction Simulation and Crystal Structural Analysis. AAPS PharmSciTech 2024; 25:238. [PMID: 39390268 DOI: 10.1208/s12249-024-02950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
Present study evaluates the usability of compaction simulation-based mechanical models as a material-sparing approach to predict tablet capping under processing compression conditions using Acetaminophen (APAP) and Ibuprofen (IBU). Measured mechanical properties were evaluated using principal component analysis (PCA) and principal component regression (PCR) models. PCR models were then utilized to predict the capping score (CS) from compression pressure (CP). APAP formulations displayed a quadratic correlation between CS and CP, with CS rank order following CP of 200MPa < 300MPa < 100MPa, indicating threshold compression pressure (TCP) limit between 200 and 300 MPa, resulting in higher CS at 300 than 200 MPa regardless of increased CP. IBU formulations displayed a linear correlation between CS and CP, with CS rank order following CP of 100MPa < 200MPa < 300MPa, indicating TCP limit between 100 and 200 MPa, resulting in higher CS at 200 and 300 than 100 MPa regardless of increased CP. Molecular models were developed as validation methods to predict capping from CP. Measured XRPD patterns of compressed tablets were linked with calculated Eatt and d-spacing of slip planes and analyzed using variable component least square methods to predict TCP triggering cleavage in slip planes and leading to capping. In APAP and IBU, TCP values were predicted at 245 and 175 MPa, meaning capped tablets above these TCP limits regardless of increased CP. A similar trend was observed in CS predictions from mechanical assessment, confirming that compaction simulation-based mechanical models can predict capping risk under desired compression conditions rapidly and accurately.
Collapse
Affiliation(s)
- Pratap Basim
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Division of Pharmaceutical Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, New York, 11201, USA
- Natoli Institute for Industrial Pharmacy Research and Development, Long Island University, Brooklyn, New Jersey, USA
- Thermo Fisher Scientific, Cincinnati, Ohio, 45237, USA
| | - Harsh S Shah
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Division of Pharmaceutical Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, New York, 11201, USA
- J-Star Research Inc, Cranbury, New Jersey, 08823, USA
| | - Robert Sedlock
- Natoli Institute for Industrial Pharmacy Research and Development, Long Island University, Brooklyn, New Jersey, USA
- Natoli Scientific, Telford, Pennsylvania, 18969, USA
| | - Bhavin V Parekh
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Division of Pharmaceutical Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, New York, 11201, USA
- Natoli Institute for Industrial Pharmacy Research and Development, Long Island University, Brooklyn, New Jersey, USA
| | - Rutesh H Dave
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Division of Pharmaceutical Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, New York, 11201, USA.
- Natoli Institute for Industrial Pharmacy Research and Development, Long Island University, Brooklyn, New Jersey, USA.
| |
Collapse
|
2
|
Gajera B, Shah H, Parekh B, Rathod V, Tilala M, Dave RH. Design of Experiments-Driven Optimization of Spray Drying for Amorphous Clotrimazole Nanosuspension. AAPS PharmSciTech 2024; 25:164. [PMID: 38997569 DOI: 10.1208/s12249-024-02871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
This study employed a Quality by Design (QbD) approach to spray dry amorphousclotrimazole nanosuspension (CLT-NS) consisting of Soluplus® and microcrystallinecellulose. Using the Box-Behnken Design, a systematic evaluation was conducted toanalyze the impact of inlet temperature, % aspiration, and feed rate on the criticalquality attributes (CQAs) of the clotrimazole spray-dried nanosuspension (CLT-SDNS). In this study, regression analysis and ANOVA were employed to detect significantfactors and interactions, enabling the development of a predictive model for the spraydrying process. Following optimization, the CLT-SD-NS underwent analysis using Xraypowder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), Dynamic Scanning Calorimetry (DSC), and in vitro dissolution studies. The resultsshowed significant variables, including inlet temperature, feed rate, and aspiration rate,affecting yield, redispersibility index (RDI), and moisture content of the final product. The models created for critical quality attributes (CQAs) showed statistical significanceat a p-value of 0.05. XRPD and DSC confirmed the amorphous state of CLT in theCLT-SD-NS, and FTIR indicated no interactions between CLT and excipients. In vitrodissolution studies showed improved dissolution rates for the CLT-SD-NS (3.12-foldincrease in DI water and 5.88-fold increase at pH 7.2 dissolution media), attributed torapidly redispersing nanosized amorphous CLT particles. The well-designed studyutilizing the Design of Experiments (DoE) methodology.
Collapse
Affiliation(s)
- Bhavin Gajera
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY, 11201, USA
- Experic, LLC, Cranbury, NJ, USA
| | - Harsh Shah
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY, 11201, USA
- BASF Corporations, Tarrytown, NY, USA
| | - Bhavin Parekh
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY, 11201, USA
| | - Vishal Rathod
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY, 11201, USA
- BluePrint Medicines, Cambridge, MA, USA
| | | | - Rutesh H Dave
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
3
|
Bekaert B, Janssen P, Fathollahi S, Vanderroost D, Roelofs T, Dickhoff B, Vervaet C, Vanhoorne V. Batch vs. continuous direct compression - a comparison of material processability and final tablet quality. Int J Pharm X 2024; 7:100226. [PMID: 38235316 PMCID: PMC10792456 DOI: 10.1016/j.ijpx.2023.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% w/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σCF) and for the tablet quality responses (σMass, σTS). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.
Collapse
Affiliation(s)
- B. Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - P.H.M. Janssen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - D. Vanderroost
- GEA Process Engineering, Keerbaan 70, B-2160 Wommelgem, Belgium
| | - T. Roelofs
- DFE Pharma, Klever Strasse 187, 47568 Goch, Germany
| | | | - C. Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V. Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Thomas J, Bui P, Zavaliangos A. Sticking Detection by Repeated Compactions on a Single Tablet. AAPS PharmSciTech 2023; 24:237. [PMID: 37989970 DOI: 10.1208/s12249-023-02694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
"Sticking" during tablet manufacture is the term used to describe the accumulation of adhered tablet material on the punch over the course of several compaction cycles. The occurrence of sticking can affect tablet weight, image, and structural integrity and halt manufacturing operations. The earlier the risk of sticking is detected during R&D, the more options are available for mitigation and the less potential there is for significant delays and costs. The detection osf sticking, however, during the early stages of drug development is challenging due to the limitations of available material quantity. In this work, single tablet multi-compaction (STMC) and a highly sensitive laser reflection sensor are used to detect the propensity of sticking with ibuprofen powder blends. STMC can differentiate the various formulations and replicates the trends of sticking at different punch speeds. The results demonstrate the potential for STMC to be used as an extremely material sparing (requiring very few tablets) methodology for the assessment of sticking during early-stage development.
Collapse
Affiliation(s)
- James Thomas
- Drug Substance Development - Material Science, GlaxoSmithKline, 1250 S, Collegeville Rd, Collegeville, PA, 19426, United States of America
- Department of Material Science and Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, United States of America
| | - Phuong Bui
- Department of Material Science and Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, United States of America
| | - Antonios Zavaliangos
- Department of Material Science and Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, United States of America.
| |
Collapse
|
5
|
Cho HJ, Kim JS, Jin SG, Choi HG. Development of Novel Tamsulosin Pellet-Loaded Oral Disintegrating Tablet Bioequivalent to Commercial Capsule in Beagle Dogs Using Microcrystalline Cellulose and Mannitol. Int J Mol Sci 2023; 24:15393. [PMID: 37895073 PMCID: PMC10607519 DOI: 10.3390/ijms242015393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we developed a tamsulosin pellet-loaded orally disintegrating tablet (ODT) that is bioequivalent to commercially available products and has improved patient compliance using microcrystalline cellulose (MCC) and mannitol. Utilizing the fluid bed technique, the drug, sustained release (SR) layer, and enteric layer were sequentially prepared by coating MCC pellets with the drug, HPMC, Kollicoat, and a mixture of Eudragit L and Eudragit NE, respectively, resulting in the production of tamsulosin pellets. The tamsulosin pellet, composed of the MCC pellet, drug layer, SR layer, and enteric layer at a weight ratio of 20:0.8:4.95:6.41, was selected because its dissolution was equivalent to that of the commercial capsule. Tamsulosin pellet-loaded ODTs were prepared using tamsulosin pellets and various co-processed excipients. The tamsulosin pellet-loaded ODT composed of tamsulosin pellets, mannitol-MCC mixture, silicon dioxide, and magnesium stearate at a weight ratio of 32.16:161.84:4.0:2.0 gave the best protective effect on the coating process and a dissolution profile similar to that of the commercial capsule. Finally, no significant differences in beagle dogs were observed in pharmacokinetic parameters, suggesting that they were bioequivalent. In conclusion, tamsulosin pellet-loaded ODTs could be a potential alternative to commercial capsules, improving patient compliance.
Collapse
Affiliation(s)
- Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Pharmaceutical Research Centre, Hanmi Pharmaceutical Co., Ltd., Paltan-Myeon, Hwaseong 18536, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Rathod V, Gajera B, Pinninti A, Mohammed IA, Dave RH. Strategizing Spray Drying Process Optimization for the Manufacture of Redispersible Indomethacin Nanoparticles Using Quality-by-Design Principles. AAPS PharmSciTech 2023; 24:133. [PMID: 37291469 DOI: 10.1208/s12249-023-02589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The present study adopted a Quality by Design (QbD) approach to spray dry indomethacin nanosuspension (IMC-NS) consisting of HPC-SL, poloxamer 407, and lactose monohydrate. The Box-Behnken Design was used to systematically evaluate the effects of inlet temperature, aspiration rate, and feed rate on the critical quality attributes (CQAs) [redispersibility index (RDI; minimize), % yield (maximize), and % release at 15 min (maximize)] of the indomethacin spray dried nanosuspension (IMC-SD-NS). To identify significant main and quadratic effects, two-way interactions, and create a predictive model for the spray drying process, regression analysis and ANOVA were utilized. Following optimization, the IMC-SD-NS was analyzed for its physicochemical properties using X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. Statistical analysis revealed significant independent variables, including inlet temperature, feed rate, and aspiration rate, that critically impacted the solidified end product's RDI, % yield, and % release at 15 min. The models developed for critical quality attributes (CQAs) were significant at a p-value of 0.05. The crystalline state of IMC was maintained in the solidified product, as confirmed by XRPD, and no interactions were observed between IMC and the excipients as evaluated by FTIR. In vitro dissolution studies showed improved dissolution rate for the IMC-SD-NS (3.82-fold increase in overall drug release), which may be attributed to the readily redispersible nanosized drug particles. The implementation of a well-designed study, utilizing Design of Experiments (DoE) methodology, played a crucial role in the development of a highly effective spray drying process.
Collapse
Affiliation(s)
- Vishal Rathod
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
- Blueprint Medicines, Cambridge, Massachusetts, 02139, USA
| | - Bhavin Gajera
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
| | - Anusha Pinninti
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
| | | | - Rutesh H Dave
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA.
| |
Collapse
|