1
|
Viegas JSR, Araujo JS, Leite MN, Praça FG, Ciampo JOD, Espreáfico EM, Frade MAC, Bentley MVLB. Bcl-2 knockdown by multifunctional lipid nanoparticle and its influence in apoptosis pathway regarding cutaneous melanoma: in vitro and ex vivo studies. Drug Deliv Transl Res 2025; 15:753-768. [PMID: 39222192 DOI: 10.1007/s13346-024-01692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional therapies have emerged as innovative strategies in cancer treatment. In this research article, we proposed a nanostructured lipid carrier (NLC) designed for the topical treatment of cutaneous melanoma, which simultaneously delivers 5-FU and Bcl-2 siRNA. The characterized nanoparticles exhibited a diameter of 259 ± 9 nm and a polydispersion index of 0.2, indicating a uniform size distribution. The NLCs were primarily localized in the epidermis, effectively minimizing the systemic release of 5-FU across skin layers. The ex vivo skin model revealed the formation of a protective lipid film, decreasing the desquamation process of the stratum corneum which can be associated to an effect of increasing permeation. In vitro assays demonstrated that A375 melanoma cells exhibited a higher sensitivity to the treatment compared to non-cancerous cells, reflecting the expected difference in their metabolic rates. The uptake of NLC by A375 cells reached approximately 90% within 4 h. The efficacy of Bcl-2 knockdown was thoroughly assessed using ELISA, Western blot, and qRT-PCR analyses, revealing a significant knockdown and synergistic action of the NLC formulation containing 5-FU and Bcl-2 siRNA (at low concentration --100 pM). Notably, the silencing of Bcl-2 mRNA also impacted other members of the Bcl-2 protein family, including Mcl-1, Bcl-xl, BAX, and BAK. The observed modulation of these proteins strongly indicated the activation of the apoptosis pathway, suggesting a successful inhibition of melanoma growth and prevention of its in vitro spread.
Collapse
Affiliation(s)
- Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jackeline Souza Araujo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcel Nani Leite
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose Orestes Del Ciampo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza Maria Espreáfico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
2
|
Gonçalves YG, Kravicz M, Massaro TNC, Aldana-Mejía JA, Bastos JK, L Bentley MVB, Marcato PD. Rational design of solid lipid-polymer hybrid nanoparticles: An innovative glycoalkaloids-carrier with potential for topical melanoma treatment. Colloids Surf B Biointerfaces 2024; 242:114098. [PMID: 39067191 DOI: 10.1016/j.colsurfb.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Despite the promising potential of Solanum plant glycoalkaloids in combating skin cancer, their clinical trials have been halted due to dose-dependent toxicity and poor water solubility. In this study, we present a rational approach to address these limitations and ensure colloidal stability of the nanoformulation over time by designing solid lipid-polymer hybrid nanoparticles (SLPH). Leveraging the biocompatible and cationic properties of polyaspartamides, we employed a new polyaspartamide derivative (P1) as a raw material for this class of nanostructures. Subsequently, we prepared SLPH through a one-step process involving hot-melt emulsification followed by ultrasonication. The physicochemical properties of the SLPH were thoroughly characterized using dynamic light scattering (DLS), ζ-potential analysis, nanoparticle tracking analysis (NTA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The optimized formulation exhibited long-term stability over six months under low temperatures, maintaining a particle size around 200 nm, a polydispersity index (PdI) lower than 0.2, and a ζ-potential between +35-40 mV. Furthermore, we evaluated the cytotoxic effect of the SLPH against human cutaneous melanoma cells (SK-MEL-28) compared to human foreskin fibroblast cells (HFF-1). Encapsulation of glycoalkaloids into the nanoparticles (SLPH-GE) resulted in a two-fold greater selective cytotoxic profile for melanoma cells than glycoalkaloids-free (GE). The nanoparticles disrupted the stratum corneum barrier with a penetration depth of approximately 77 μm. These findings underscore the potential of the developed nanosystem as an effective glycoalkaloid carrier with suitable colloidal and biological properties for further studies in topical treatment strategies for cutaneous melanoma.
Collapse
Affiliation(s)
- Yasmim G Gonçalves
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Marcelo Kravicz
- School of Surgery and Medicine, University of Milano-Bicocca, Italy
| | - Taís N C Massaro
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Jennyfer A Aldana-Mejía
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Maria Vitória B L Bentley
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Priscyla D Marcato
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
4
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
5
|
Wu YZ, Chen WY, Zeng Y, Ji QL, Yang Y, Guo XL, Wang X. Inflammation-Responsive Mesoporous Silica Nanoparticles with Synergistic Anti-inflammatory and Joint Protection Effects for Rheumatoid Arthritis Treatment. Pharm Res 2024; 41:1493-1505. [PMID: 38918308 DOI: 10.1007/s11095-024-03732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Ye-Zhen Wu
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Wen-Yu Chen
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Ying Zeng
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Qi-Lin Ji
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Yue Yang
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Xu-Liang Guo
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
| | - Xiu Wang
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
| |
Collapse
|
6
|
Karimzadeh F, Soltani Fard E, Nadi A, Malekzadeh R, Elahian F, Mirzaei SA. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J Mater Chem B 2024; 12:6033-6062. [PMID: 38887828 DOI: 10.1039/d4tb00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The skin, serving as the body's outermost layer, boasts a vast area and intricate structure, functioning as the primary barrier against external threats. Disruptions in the composition and functionality of the skin can lead to a diverse array of skin conditions, such as wounds, burns, and diabetic ulcers, along with inflammatory disorders, infections, and various types of skin cancer. These disorders not only exacerbate concerns regarding skin health and beauty but also have a significant impact on mental well-being. Due to the complexity of these disorders, conventional treatments often prove insufficient, necessitating the exploration of new therapeutic approaches. Researchers develop new therapies by deciphering these intricacies and gaining a thorough understanding of the protein networks and molecular processes in skin. A new window of opportunity has opened up for improving wound healing processes because of recent advancements in skin gene therapy. To enhance skin regeneration and healing, this extensive review investigates the use of novel dressing scaffolds in conjunction with gene therapy approaches. Scaffolds that do double duty as wound protectors and vectors for therapeutic gene delivery are being developed using innovative biomaterials. To improve cellular responses and speed healing, these state-of-the-art scaffolds allow for the targeted delivery and sustained release of genetic material. The most recent developments in gene therapy techniques include RNA interference, CRISPR-based gene editing, and the utilization of viral and non-viral vectors in conjunction with scaffolds, which were reviewed here to overcome skin disorders and wound complications. In the future, there will be rare chances to develop custom methods for skin health care thanks to the combination of modern technology and collaboration among disciplines.
Collapse
Affiliation(s)
- Fatemeh Karimzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rahim Malekzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Yang Y, Huang S, Ma Q, Li N, Li R, Wang Y, Liu H. Combined therapeutic strategy based on blocking the deleterious effects of AGEs for accelerating diabetic wound healing. Regen Biomater 2024; 11:rbae062. [PMID: 39323743 PMCID: PMC11424028 DOI: 10.1093/rb/rbae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 09/27/2024] Open
Abstract
Diabetic foot ulcer is a serious complication of diabetes. Excessive accumulation of advanced glycation end products (AGEs) is one of the critical pathogenic factors in postponing diabetic wound healing. The main pathogenic mechanisms of AGEs include inducing cellular dysfunction, prolonging inflammatory response, increasing oxidative stress and reducing endogenous nitric oxide (NO) production. Combination therapy of blocking the deleterious effects of AGEs and supplementing exogenous NO is hypothesized to promote diabetic wound healing. Here, we presented nanoparticles/hydrogel composite dressings to co-delivery rosiglitazone and S-nitroso glutathione into the wound bed. The designed co-delivery system augmented the survival of fibroblasts, reduced oxidative stress levels, reversed the change of mitochondrial membrane potential and decreased the proinflammatory cytokine expression. Local sustained release of therapeutic agents significantly improved the wound healing of diabetic rats including increasing the wound closure rate, alleviating inflammation, promoting collagen fiber production and angiogenesis. Our finding indicated this local deliver strategy aimed at inhibiting the toxic effects of AGEs has great clinical potential for diabetic wound treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siwen Huang
- Department of Pharmaceutics, Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Ma
- Department of Pharmaceutics, Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- Department of Pharmaceutics, Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Runchu Li
- Beijing No. 4 High School International Campus, Beijing 100031, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongzhuo Liu
- Department of Pharmaceutics, Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
de Araujo MM, Borgheti-Cardoso LN, Praça FG, Marcato PD, Bentley MVLB. Solid Lipid-Polymer Hybrid Nanoplatform for Topical Delivery of siRNA: In Vitro Biological Activity and Permeation Studies. J Funct Biomater 2023; 14:374. [PMID: 37504869 PMCID: PMC10381295 DOI: 10.3390/jfb14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Small interfering RNA (siRNA) molecules have limited transfection efficiency and stability, necessitating the use of delivery systems to be effective in gene knockdown therapies. In this regard, lipid-polymeric nanocarriers have emerged as a promising class of nanoparticles for siRNA delivery, particularly for topical applications. We proposed the use of solid lipid-polymer hybrid nanoparticles (SLPHNs) as topical delivery systems for siRNA. This approach was evaluated by assessing the ability of SLPHNs-siRNA complexes to internalize siRNA molecules and both to penetrate skin layers in vitro and induce gene knocking down in a skin cell line. The SLPHNs were formed by a specific composition of solid lipids, a surfactant polymer as a dispersive agent, and a cationic polymer as a complexing agent for siRNA. The optimized nanocarriers exhibited a spherical shape with a smooth surface. The average diameter of the nanoparticles was found to be 200 nm, and the zeta potential was measured to be +20 mV. Furthermore, these nanocarriers demonstrated excellent stability when stored at 4 °C over a period of 90 days. In vitro and in vivo permeation studies showed that SLPHNs increased the cutaneous penetration of fluorescent-labeled siRNA, which reached deeper skin layers. Efficacy studies were conducted on keratinocytes and fibroblasts, showing that SLPHNs maintained cell viability and high cellular uptake. Furthermore, SLPHNs complexed with siRNA against Firefly luciferase (siLuc) reduced luciferase expression, proving the efficacy of this nanocarrier in providing adequate intracellular release of siRNA for silencing specific genes. Based on these results, the developed carriers are promising siRNA delivery systems for skin disease therapy.
Collapse
Affiliation(s)
- Margarete Moreno de Araujo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Livia Neves Borgheti-Cardoso
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|