1
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2024; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
2
|
Ahmed Y, Mahmoud AAK, Ludasi K, Sovány T. Advances in Loading Techniques and Quality by Design for Fused Deposition Modeling in Pharmaceutical Production: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:1496. [PMID: 39598407 PMCID: PMC11597217 DOI: 10.3390/ph17111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Three-dimensional printing technology has emerging interest in pharmaceutical manufacturing, offering new opportunities for personalized medicine and customized drug delivery systems. Fused deposition modeling (FDM) is highly regarded in the pharmaceutical industry because of its cost effectiveness, easy operation, and versatility in creating pharmaceutical dosage forms. This review investigates different methods of incorporating active pharmaceutical ingredients (APIs) into filament matrices for use in fused deposition modeling (FDM) 3D printing. METHODS Two electronic databases, the Web of Science and PubMed, were utilized to survey the literature. The selected keywords for this review were as follows: fused filament fabrication OR fused deposition modeling OR FDM OR FFF AND 3D printing AND loading techniques OR impregnation techniques AND solid dosage form. RESULTS This paper evaluates various loading techniques such as soaking, supercritical impregnation, microwave impregnation, and hot-melt extrusion, focusing on their effectiveness and capacity for drug incorporation. Additionally, this review includes a thorough risk assessment of the extrusion process using Ishikawa and SWOT analyses. CONCLUSIONS Overall, this review provides comprehensive insights into the latest advancements in 3D printing for pharmaceutical applications and identifies key areas for future research and development.
Collapse
Affiliation(s)
| | | | | | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u 6, H-6720 Szeged, Hungary; (Y.A.); (A.A.K.M.); (K.L.)
| |
Collapse
|
3
|
Tegegne AM, Ayenew KD, Selam MN. Review on Recent Advance of 3DP-Based Pediatric Drug Formulations. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4875984. [PMID: 39364267 PMCID: PMC11449557 DOI: 10.1155/2024/4875984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/14/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a game-changing technology in the pharmaceutical industry, providing novel formulation development in the pharmaceutical sector as a whole, which improved patients' individualized therapy. The pediatric population is among the key targets for individualized therapy. Children are a diverse group that includes neonates, infants, and toddlers, each with unique physiological characteristics. Treatment adherence has a significant impact on safe and effective pharmacotherapy in the pediatric population. Improvement of therapeutic dosage forms that provide for the special demands of the pediatric population is a significant challenge for the pharmaceutical industry. Scientists have actively explored 3DP, a quick prototype manufacturing method that has emerged in recent years from many occupations due to its benefits of modest operation, excellent reproducibility, and vast adaptability. This review illuminates the most widely used 3DP technology and its application in the development of pediatric-friendly drug formulations. This 3DP technology allows optimization of pediatric dosage regimens and cases that require individualized treatment, such as geriatrics, renal impairment, liver impairment, critically ill, pregnancy populations, and drugs with nonlinear pharmacokinetics. The fast evolution of 3DP expertise, in addition to the introduction of pharmaceutical inks, has enormous promise for patient dosage form customization.
Collapse
Affiliation(s)
- Aychew Mekuriaw Tegegne
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Kassahun Dires Ayenew
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Muluken Nigatu Selam
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Ahmed M, Tomlin S, Tuleu C, Garfield S. Real-World Evidence of 3D Printing of Personalised Paediatric Medicines and Evaluating Its Potential in Children with Cancer: A Scoping Review. Pharmaceutics 2024; 16:1212. [PMID: 39339248 PMCID: PMC11434924 DOI: 10.3390/pharmaceutics16091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna Briggs Institute (JBI) methodology, a comprehensive search strategy was implemented to identify the relevant literature across databases including PubMed, Embase, and Web of Science. Three independent reviewers conducted study selection and data extraction, focusing on studies involving paediatric patients under 18 years old and pharmaceutical dosage forms manufactured using 3D printing technology. From 2752 records screened, only six studies met the inclusion criteria, none of which specifically targeted paediatric cancer patients. These studies examined aspects of acceptability, including swallowability, taste, and feasibility of 3D-printed formulations for children. While the studies demonstrated the potential benefits of 3D printing in paediatric medication, particularly in personalised dosing, there is a notable lack of evidence addressing its acceptability in paediatric cancer patients. Further interdisciplinary collaborative research is needed in this area to fully assess preferences and acceptability among children with cancer and their parents or caregivers.
Collapse
Affiliation(s)
- Munsur Ahmed
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Stephen Tomlin
- Children's Medicine Research & Innovation Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Catherine Tuleu
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Sara Garfield
- School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
5
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
6
|
Trofimiuk M, Olechno K, Trofimiuk E, Czajkowska-Kośnik A, Ciosek-Skibińska P, Głowacz K, Lenik J, Basa A, Car H, Winnicka K. Utilization of the Drug-Polymer Solid Dispersion Obtained by Ball Milling as a Taste Masking Method in the Development of Orodispersible Minitablets with Hydrocortisone in Pediatric Doses. Pharmaceutics 2024; 16:1041. [PMID: 39204386 PMCID: PMC11359562 DOI: 10.3390/pharmaceutics16081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The objective of the conducted research was to design 2 mm orodispersible minitablets of pediatric doses of hydrocortisone (0.5 mg; 1.0 mg) with desirable pharmaceutical properties and eliminate the sensation of a bitter taste using preparation of solid dispersion by ball mill. Hydrocortisone was selected as the model substance, as it is widely utilized in the pediatric population. ODMTs were prepared by compression (preceded by granulation) in a traditional single-punch tablet machine and evaluated using pharmacopoeial tests, DSC, and FTIR analysis. The methods used to evaluate the effectiveness of the taste-masking effect included in vivo participation of healthy volunteers, in vitro drug dissolution and utilization of an analytical device-"electronic tongue". The research employed a preclinical animal model to preliminary investigate the bioequivalence of the designed drug dosage form in comparison to reference products. The study confirmed the possibility of manufacturing good-quality hydrocortisone ODMTs with a taste-masking effect owing to the incorporation of a solid dispersion in the tablet mass.
Collapse
Affiliation(s)
- Monika Trofimiuk
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland
| | - Katarzyna Olechno
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.C.-K.); (K.W.)
| | - Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15-274 Bialystok, Poland; (E.T.); (H.C.)
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.C.-K.); (K.W.)
| | - Patrycja Ciosek-Skibińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.C.-S.); (K.G.)
| | - Klaudia Głowacz
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.C.-S.); (K.G.)
| | - Joanna Lenik
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland;
| | - Anna Basa
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15-274 Bialystok, Poland; (E.T.); (H.C.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.C.-K.); (K.W.)
| |
Collapse
|
7
|
Tong H, Zhang J, Ma J, Zhang J. Perspectives on 3D printed personalized medicines for pediatrics. Int J Pharm 2024; 653:123867. [PMID: 38310991 DOI: 10.1016/j.ijpharm.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.
Collapse
Affiliation(s)
- Haixu Tong
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jing Ma
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China.
| |
Collapse
|
8
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
9
|
Al-Rayess H, Lahoti A, Simpson LL, Palzer E, Thornton P, Heksch R, Kamboj M, Stanley T, Regelmann MO, Gupta A, Raman V, Mehta S, Geffner ME, Sarafoglou K. Practice Variation among Pediatric Endocrinologists in the Dosing of Glucocorticoids in Young Children with Congenital Adrenal Hyperplasia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1871. [PMID: 38136073 PMCID: PMC10742174 DOI: 10.3390/children10121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
A Pediatric Endocrine Society (PES) Drugs and Therapeutics Committee workgroup sought to determine the prescribing practices of pediatric endocrinologists when treating children <10 years of age with congenital adrenal hyperplasia (CAH). Our workgroup administered a 32-question online survey to PES members. There were 187 respondents (88.9% attending physicians), mostly from university-affiliated clinics (~80%). Ninety-eight percent of respondents prescribed the short-acting glucocorticoid hydrocortisone to treat young children, as per the Endocrine Society CAH Guidelines, although respondents also prescribed long-acting glucocorticoids such as prednisolone suspension (12%), prednisone tablets (9%), and prednisone suspension (6%). Ninety-seven percent of respondents indicated that they were likely/very likely to prescribe hydrocortisone in a thrice-daily regimen, as per CAH Guidelines, although 19% were also likely to follow a twice-daily regimen. To achieve smaller doses, using a pill-cutter was the most frequent method recommended by providers to manipulate tablets (87.2%), followed by dissolving tablets in water (25.7%) to create a daily batch (43.7%) and/or dissolving a tablet for each dose (64.6%). Thirty-one percent of providers use pharmacy-compounded hydrocortisone suspension to achieve doses of <2.5 mg. Our survey shows that practices among providers in the dosing of young children with CAH vary greatly and sometimes fall outside of the CAH Guidelines-specifically when attempting to deliver lower, age-appropriate hydrocortisone doses.
Collapse
Affiliation(s)
- Heba Al-Rayess
- Department of Pediatrics, Division of Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55454, USA;
| | - Amit Lahoti
- Department of Pediatrics, Division of Endocrinology, Nationwide Children’s Hospital at The Ohio State University, Columbus, OH 43205, USA; (A.L.); (M.K.)
| | - Leslie Long Simpson
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA; (L.L.S.); (E.P.)
| | - Elise Palzer
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA; (L.L.S.); (E.P.)
| | - Paul Thornton
- Division of Endocrinology and Diabetes, Cook Children’s Medical Center, Fort Worth, TX 76104, USA;
| | - Ryan Heksch
- Center for Diabetes and Endocrinology, Department of Pediatrics, Akron Children’s Hospital, Akron, OH 44308, USA;
| | - Manmohan Kamboj
- Department of Pediatrics, Division of Endocrinology, Nationwide Children’s Hospital at The Ohio State University, Columbus, OH 43205, USA; (A.L.); (M.K.)
| | - Takara Stanley
- Pediatric Endocrine Unit and Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Molly O. Regelmann
- Division of Pediatric Endocrinology and Diabetes, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA;
| | - Anshu Gupta
- Division of Pediatric Endocrinology, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Vandana Raman
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Shilpa Mehta
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, New York Medical College, Valhalla, NY 10595, USA
| | - Mitchell E. Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, The Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA;
| | - Kyriakie Sarafoglou
- Department of Pediatrics, Division of Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55454, USA;
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Kaba K, Purnell B, Liu Y, Royall PG, Alhnan MA. Computer numerical control (CNC) carving as an on-demand point-of-care manufacturing of solid dosage form: A digital alternative method for 3D printing. Int J Pharm 2023; 645:123390. [PMID: 37683980 DOI: 10.1016/j.ijpharm.2023.123390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Computer numerical control (CNC) carving is a widely used method of industrial subtractive manufacturing of wood, plastics, and metal products. However, there have been no previous reports of applying this approach to manufacture medicines. In this work, the novel method of tablet production using CNC carving is introduced for the first time. This report provides a proof-of-concept for applying subtractive manufacturing as an alternative to formative (powder compression) and additive (3D printing) manufacturing for the on-demand production of solid dosage forms. This exemplar manufacturing approach was employed to produce patient-specific hydrocortisone (HC) tablets for the treatment of children with congenital adrenal hyperplasia. A specially made drug-polymer cast based on polyethene glycol (PEG 6,000) and hydroxypropyl cellulose was produced using thermal casting. The cast was used as a workpiece and digitally carved using a small-scale 3-dimensional (3D) CNC carving. To establish the ability of this new approach to provide an accurate dose of HC, four different sizes of CNC carved tablet were manufactured to achieve HC doses of 2.5, 5, 7.5 and 10 mg with a relative standard deviation of the tablet weight in the range of 3.69-4.79%. In addition, batches of 2.5 and 5 mg HC tablets met the British Pharmacopeia standards for weight uniformity. Thermal analysis and X-ray powder diffraction indicated that the model drug was in amorphous form. In addition, HPLC analysis indicated a level of purity of 96.5 ± 1.1% of HC. In addition, the process yielded mechanically strong cylindrical tablets with tensile strength ranging from 0.49 to 1.6 MPa and friability values of <1%, whilst maintaining an aesthetic look. In vitro, HC release from the CNC-carved tablets was slower with larger tablet sizes and higher binder contents. This is the first report on applying CNC carving in the pharmaceutical context of producing solid dosage forms. The work showed the potential of this technology as an alternative method for the on-demand manufacturing of patient-specific dosage forms.
Collapse
Affiliation(s)
- Kazim Kaba
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Bryn Purnell
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Yujing Liu
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Paul G Royall
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|