1
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Exploiting lignin-based nanomaterials for enhanced anticancer therapy: A comprehensive review and future direction. Int J Biol Macromol 2024; 281:136266. [PMID: 39366596 DOI: 10.1016/j.ijbiomac.2024.136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Lignin, a renewable and abundant natural polymer, has emerged as a promising candidate for anticancer therapy due to its unique properties and biocompatibility. This review provides a comprehensive overview of recent advancements in the utilization of lignin-based nanomaterials for enhancing anticancer drug delivery and therapeutic outcomes. A detailed examination of the literature reveals several synthesis methods, including nanoprecipitation, microemulsion, and solvent exchange, which produce lignin nanoparticles with improved drug solubility and bioavailability. The anticancer mechanisms of lignin nanoparticles, such as the generation of reactive oxygen species (ROS), induction of apoptosis, and enhanced cellular uptake, are also explored. Lignin nanoparticles loaded with drugs like curcumin, doxorubicin, camptothecin, and resveratrol have demonstrated the ability to improve drug efficacy, selectively target cancer cells, overcome multidrug resistance, and minimize toxicity in both in vitro and in vivo studies. These nanoparticles have shown significant potential in suppressing tumor growth, inducing cell death through apoptotic pathways, and enhancing the synergistic effects of combination therapies, such as chemo-phototherapy. Future research directions include optimizing lignin nanoparticle formulations for clinical applications, refining targeted delivery mechanisms to cancer cells, and conducting thorough biocompatibility and toxicity assessments. Overall, this review highlights the significant progress made in utilizing lignin-based nanomaterials for cancer therapy and outlines promising areas for further exploration in this rapidly evolving field.
Collapse
Affiliation(s)
- Haoyu Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an, Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaoyang Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an, Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Long Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an, Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxing Zhang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China.
| |
Collapse
|
2
|
Mneimneh AT, Darwiche N, Mehanna MM. Investigating the therapeutic promise of drug-repurposed-loaded nanocarriers: A pioneering strategy in advancing colorectal cancer treatment. Int J Pharm 2024; 664:124473. [PMID: 39025341 DOI: 10.1016/j.ijpharm.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrence and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticles formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
3
|
Amin H, Ibrahim IM, Hassanein EHM. Weaponizing chitosan and its derivatives in the battle against lung cancer. Int J Biol Macromol 2024; 272:132888. [PMID: 38844273 DOI: 10.1016/j.ijbiomac.2024.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer (LC) is a crisis of catastrophic proportions. It is a global problem and urgently requires a solution. The classic chemo drugs are lagging behind as they lack selectivity, where their side effects are spilled all over the body, and these adverse effects would be terribly tragic for LC patients. Therefore, they could make a bad situation worse, inflict damage on normal cells, and inflict pain on patients. Since our confidence in classic drugs is eroding, chitosan can offer a major leap forward in LC therapy. It can provide the backbone and the vehicle that enable chemo drugs to penetrate the hard shell of LC. It could be functionalized in a variety of ways to deliver a deadly payload of toxins to kill the bad guys. It is implemented in formulation of polymeric NPs, lipidic NPs, nanocomposites, multiwalled carbon nanotubes, and phototherapeutic agents. This review is a pretty clear proof of chitosan's utility as a weapon in battling LC. Chitosan-based formulations could work effectively to kill LC cells. If a researcher is looking for a vehicle for medication for LC therapy, chitosan can be an appropriate choice.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
4
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
6
|
Yang B, Mao Y, Zhang Y, Hao Y, Guo M, Li B, Peng H. HA-Coated PLGA Nanoparticles Loaded with Apigenin for Colon Cancer with High Expression of CD44. Molecules 2023; 28:7565. [PMID: 38005286 PMCID: PMC10673172 DOI: 10.3390/molecules28227565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Apigenin (API) possesses excellent antitumor properties but its limited water solubility and low bioavailability restrict its therapeutic impact. Thus, a suitable delivery system is needed to overcome these limitations and improve the therapeutic efficiency. Poly (lactic-co-glycolic acid) (PLGA) is a copolymer extensively utilized in drug delivery. Hyaluronic acid (HA) is a major extracellular matrix component and can specifically bind to CD44 on colon cancer cells. Herein, we aimed to prepare receptor-selective HA-coated PLGA nanoparticles (HA-PLGA-API-NPs) for colon cancers with high expression of CD44; chitosan (CS) was introduced into the system as an intermediate, simultaneously binding HA and PLGA through electrostatic interaction to facilitate a tighter connection between them. API was encapsulated in PLGA to obtain PLGA-API-NPs, which were then sequentially coated with CS and HA to form HA-PLGA-API-NPs. HA-PLGA-API-NPs had a stronger sustained-release capability. The cellular uptake of HA-PLGA-API-NPs was enhanced in HT-29 cells with high expression of CD44. In vivo, HA-PLGA-API-NPs showed enhanced targeting specificity towards the HT-29 ectopic tumor model in nude mice in comparison with PLGA-API-NPs. Overall, HA-PLGA-API-NPs were an effective drug delivery platform for API in the treatment of colon cancers with high expression of CD44.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yongqing Mao
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| | - Yanjun Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yue Hao
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
- Heilongjiang Provincial Key Laboratory of Neurobiology, Department of Neurobiology, Harbin Medical University, Harbin 150086, China
| | - Meitong Guo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| | - Bian Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| | - Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| |
Collapse
|