1
|
Liu J, Sun J, Hu J, Xue H, Lei L, Pan X. Biomaterial-based drug delivery strategies for oral mucosa. Colloids Surf B Biointerfaces 2025; 251:114604. [PMID: 40081256 DOI: 10.1016/j.colsurfb.2025.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Drug therapy is a key field in modern medicine, and the optimization of its delivery method is crucial. Traditional methods are inherently limited by first-pass effects, high-risk adverse reactions, and patient compliance challenges, which significantly restrict the effectiveness and application potential of drugs. Oral mucosal drug delivery has become a minimally invasive and effective drug delivery strategy. The unique anatomical structure of the oral mucosa facilitates the rapid absorption of drugs into the systemic circulation, thus producing rapid therapeutic effects. However, a complex oral microenvironment and mucosal barrier impede drug absorption. Biomaterials have become an important driving force for the innovative development of oral medicine, owing to their unique and excellent properties. They are widely used for preventing, diagnosing, treating, and rehabilitating oral diseases. This review explores recent advancements in biomaterial-enabled oral mucosal drug delivery systems, analyzing key physiological factors and absorption barriers that impact therapeutic outcomes. Focusing on innovative material engineering strategies highlights significant progress in extending drug residence time and improving delivery precision within the oral cavity. Furthermore, the study identifies critical challenges in translating these advancements from research to clinical practice, emphasizing the need for solutions to bridge this gap.
Collapse
Affiliation(s)
- Junhui Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jiao Sun
- Changsha Stomatological Hospital, Changsha 410000, China
| | - Jun Hu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
2
|
Rizawan A, Rehman U, Gupta G, Alsayari A, Wahab S, Kesharwani P. Polyglutamic acid in cancer nanomedicine: Advances in multifunctional delivery platforms. Int J Pharm 2025:125623. [PMID: 40254191 DOI: 10.1016/j.ijpharm.2025.125623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Polyglutamic acid (PGA)-coated nanoparticles have emerged as a significant advancement in cancer nanomedicine due to their biocompatibility, biodegradability, and versatility. PGA enhances the stability and bioavailability of therapeutic agents, enabling controlled and sustained drug release with reduced systemic toxicity. Stimuli-responsive modifications to PGA allow for precise drug delivery tailored to the tumor microenvironment, improving specificity and therapeutic outcomes. PGA's potential extends to gene delivery, where it facilitates safe and efficient transfection, addressing critical challenges such as multidrug resistance. Additionally, PGA-coated nanoparticles play a pivotal role in theranostic, integrating diagnostic and therapeutic capabilities within a single platform for real-time monitoring and treatment optimization. These nanoparticles have demonstrated enhanced efficacy in chemotherapy, immunotherapy, and combination regimens, tackling persistent issues like poor tumor penetration and non-specific drug distribution. Advancements in stimuli-responsive designs, ligand functionalization, and payload customization highlight the adaptability of PGA-based platforms for precision oncology. However, challenges such as scalability, stability under physiological conditions, and regulatory compliance remain key obstacles to clinical translation. This review explores the design, development, and applications of PGA-coated nanoparticles, emphasizing their potential to transform cancer treatment through safer, more effective, and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Asfi Rizawan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
3
|
Wang Z, Wang L, Wang S, Chen H, Wang D, Li A, Huang Y, Pu Y, Xiong X, Lui X, Huang Y, Guo L. The Extracellular Matrix Promotes Diabetic Oral Wound Healing by Modulating the Microenvironment. Biomater Res 2025; 29:0169. [PMID: 40110050 PMCID: PMC11922533 DOI: 10.34133/bmr.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Oral wounds in diabetes mellitus (DM) often delay healing due to reduced angiogenesis and increased inflammatory response in the local microenvironment, even leading to graft necrosis and implant failure. Therefore, developing an effective program to promote healing is of great clinical value. Much of the current research is focused on promoting wound healing through surface adhesive materials that exert a pro-angiogenic, anti-inflammatory effect. However, the application of surface bonding materials in the oral cavity is very limited due to the humid and friction-prone environment. Decellularized extracellular adipose tissue (DAT) is an easily accessible and biocompatible material derived from adipose tissue. To further explore the potential of DAT, we used multi-omics to analyze its composition and possible mechanisms. Proteomic studies revealed that DAT contains anti-inflammatory, pro-angiogenic proteins that promote DM tissue regeneration. To adapt to the moist and chewing friction environment of the mouth, we modified DAT into a temperature-sensitive hydrogel material that can be injected intramucosally. DAT hydrogel has been verified to promote angiogenesis and exert anti-inflammatory effects through macrophage phenotypic transformation. Meanwhile, transcriptome analysis suggested that the inhibitory effect of DAT on the interleukin 17 signaling pathway might be a key factor in promoting DM oral wound healing. In conclusion, after multi-omic analysis, DAT hydrogel can exert good pro-angiogenic and anti-inflammatory effects through the interleukin 17 signaling pathway and can be adapted to the specific environment of the oral cavity. This provides a potential way to promote DM oral wound healing in a clinical setting.
Collapse
Affiliation(s)
- Zhongke Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Li Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Sihan Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Hongmei Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Danni Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Aodi Li
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Ying Huang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Yifan Pu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Xinlei Xiong
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Xiangrui Lui
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Yuwen Huang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Ling Guo
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| |
Collapse
|
4
|
Dionísio T, Brandão P, Machado V, Mendes JJ, Fonte P, Botelho J. Drug delivery systems for mouth wound healing. DRUG DELIVERY SYSTEMS FOR WOUND HEALING 2025:173-196. [DOI: 10.1016/b978-0-323-85840-3.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Xie H, Sha XM, Hu ZZ, Tu ZC. Enhanced stability of curcumin encapsulated in fish gelatin emulsions combined with γ-Polyglutamic acid. Int J Biol Macromol 2025; 284:137772. [PMID: 39557231 DOI: 10.1016/j.ijbiomac.2024.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
This study examined the rheological properties, interfacial characteristics, particle size, zeta potential, Turbiscan stability index (TSI), morphology, and encapsulation efficiency of curcumin (Cur) loaded fish gelatin (FG) emulsions modified with γ-polyglutamic acid (γ-PGA). The results showed that adding γ-PGA significantly increased curcumin encapsulation efficiency. At 0.3 mg/mL, FG emulsions had an encapsulation efficiency of 80.14 %, while FG-γ-PGA emulsions reached 90.35 %. The FG-γ-PGA emulsions also showed enhanced stability and resistance to phase separation, remaining stable for seven days, compared to three days for FG emulsions. After 24 h, the TSI of FG emulsions with 0.6 mg/mL Cur was 2.46, significantly higher than the 0.55 TSI for FG-γ-PGA emulsions at the same concentration. FG-γ-PGA emulsions had smaller droplet sizes, and analysis of interfacial characteristics, particle size, and zeta potential indicated better system stability than FG emulsions. These improved properties of FG-γ-PGA emulsions highlight their potential as efficient carriers for curcumin. Overall, the favorable characteristics of FG-γ-PGA emulsions suggest promising applications in the food industry, especially for developing functional foods with extended shelf life and enhanced nutritional benefits.
Collapse
Affiliation(s)
- Huan Xie
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| | - Zi-Zi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Liao Q, Lin L, Tang R, Xu Z, Kong S, Lv D, Bai D, Liu Y, Li H. Preparation and characterization of mussel-inspired chitosan/polydopamine films and their feasibility for oral mucosa application. Int J Biol Macromol 2024; 279:135179. [PMID: 39236950 DOI: 10.1016/j.ijbiomac.2024.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Oral mucosal lesions (OML), which represent a major public health issue worldwide, include any pathological changes in the oral mucosa, such as ulcers, pigmentation, and swelling. Due to its humid and dynamic complex environment, designing oral mucosal preparations poses significant challenges. Drawing inspiration from mussels, this study employed an eco-friendly one-pot strategy for the preparation of chitosan/polydopamine (CS/PDA) films. We demonstrated that CS-induced polymerization of dopamine monomers under acidic conditions, which might be attributed to the large number of hydrogen bonding sites of CS chains. PDA markedly enhances properties of the CS film and exhibits concentration dependence. At the concentration of 1 wt% PDA, the lap-shear strength and tensile strength of CS/PDA films reached 5.01 ± 0.24 kpa and 4.20 ± 0.78 kpa, respectively, indicating that the mucosal adhesion ability was significantly improved. In comparison with the single CS film, the swelling rate of CS/PDA film decreased by about 30 %. Rheological results also showed that the storage modulus returned to 93 % after cyclic large strain, while the single CS film only recovered to 73 %. Moreover, these films demonstrated good biocompatibility and enhanced oral ulcer healing in rats, providing a new and practical option for the local treatment of OML.
Collapse
Affiliation(s)
- Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dan Lv
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Donghan Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Jiangxi 330006, China.
| |
Collapse
|
7
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|