1
|
Alzhrani F, Aljazeeri I, Abdelsamad Y, Alsanosi A, Kim AH, Ramos-Macias A, Ramos-de-Miguel A, Kurz A, Lorens A, Gantz B, Buchman CA, Távora-Vieira D, Sprinzl G, Mertens G, Saunders JE, Kosaner J, Telmesani LM, Lassaletta L, Bance M, Yousef M, Holcomb MA, Adunka O, Thomasen PC, Skarzynski PH, Rajeswaran R, Briggs RJ, Oh SH, Plontke S, O’Leary SJ, Agrawal S, Yamasoba T, Lenarz T, Wesarg T, Kutz W, Connolly P, Anderson I, Hagr A. International Consensus Statements on Intraoperative Testing for Cochlear Implantation Surgery. Ear Hear 2024; 45:1418-1426. [PMID: 38915137 PMCID: PMC11487033 DOI: 10.1097/aud.0000000000001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/29/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVES A wide variety of intraoperative tests are available in cochlear implantation. However, no consensus exists on which tests constitute the minimum necessary battery. We assembled an international panel of clinical experts to develop, refine, and vote upon a set of core consensus statements. DESIGN A literature review was used to identify intraoperative tests currently used in the field and draft a set of provisional statements. For statement evaluation and refinement, we used a modified Delphi consensus panel structure. Multiple interactive rounds of voting, evaluation, and feedback were conducted to achieve convergence. RESULTS Twenty-nine provisional statements were included in the original draft. In the first voting round, consensus was reached on 15 statements. Of the 14 statements that did not reach consensus, 12 were revised based on feedback provided by the expert practitioners, and 2 were eliminated. In the second voting round, 10 of the 12 revised statements reached a consensus. The two statements which did not achieve consensus were further revised and subjected to a third voting round. However, both statements failed to achieve consensus in the third round. In addition, during the final revision, one more statement was decided to be deleted due to overlap with another modified statement. CONCLUSIONS A final core set of 24 consensus statements was generated, covering wide areas of intraoperative testing during CI surgery. These statements may provide utility as evidence-based guidelines to improve quality and achieve uniformity of surgical practice.
Collapse
Affiliation(s)
- Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Isra Aljazeeri
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Aljaber Ophthalmology and Otolaryngology Specialized Hospital, Ministry of Health, Ahsa, Saudi Arabia
- Isra Aljazeeri shared first author
| | - Yassin Abdelsamad
- Research Department, Research Department, MED-EL GmbH, Riyadh, Saudi Arabia
| | - Abdulrahman Alsanosi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Ana H. Kim
- Columbia University Medical Center, New York, New York, USA
| | - Angel Ramos-Macias
- Department of Otolaryngology and Head and Neck Surgery, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Angel Ramos-de-Miguel
- Department of Otolaryngology and Head and Neck Surgery, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Anja Kurz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Würzburg, Germany
| | - Artur Lorens
- Word Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Bruce Gantz
- Department of Otolaryngology—Head and Neck Surgery/Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa, USA
| | - Craig A. Buchman
- Department of Otolaryngology-Head & Neck Surgery, Washington University in St. Louis, St. Louis, MO
| | - Dayse Távora-Vieira
- Division of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Audiology, Fiona Stanley Fremantle Hospitals Group, Perth, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Georg Sprinzl
- Department of Otorhinolaryngology, Karl Landsteiner University of Health Sciences, University Hospital St. Poelten, St. Poelten, Austria
| | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Antwerp, Belgium
| | - James E. Saunders
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, New Hampshire, USA
| | - Julie Kosaner
- Meders Speech and Hearing Clinic, Meders İşitme ve Konuşma Merkezi, İstanbul, Turkey
| | - Laila M. Telmesani
- Department of Otolaryngology/Head and Neck Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Luis Lassaletta
- Department of Otorhinolaryngology, Hospital La Paz, IdiPAZ Research Institute, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases, Institute of Health Carlos III, Madrid, Spain
| | - Manohar Bance
- Department of Otolaryngology-Head and Neck Surgery, Addenbrooke’s Hospital, University of Cambridge, United Kingdom
| | - Medhat Yousef
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Audiology Unit, ENT Department, Menoufia University, Menoufia, Egypt
| | - Meredith A. Holcomb
- Hearing Implant Program, Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - Oliver Adunka
- Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Per Cayé- Thomasen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Denmark
| | - Piotr H. Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Faculty of Dental Medicine, Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
- Institute of Sensory Organs, Nadarzyn/Kajetany, Poland
- Center of Hearing and Speech “Medincus,” Nadarzyn/Kajetany, Poland
| | - Ranjith Rajeswaran
- Madras ENT Research Foundation MERF Institute of Speech and Hearing, Chennai, India
| | - Robert J. Briggs
- Department of Surgery, Otolaryngology, The University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Seung-Ha Oh
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Stefan Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery; Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephen J. O’Leary
- Department of Surgery, Otolaryngology, The University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Tatsuya Yamasoba
- Tokyo Teishin Hospital, Tokyo, Japan
- Department of Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Wesarg
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Walter Kutz
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ilona Anderson
- Clinical Research Department, MED-EL GmbH, Innsbruck, Austria
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Panah N, Brazin A, Ebrahimi Shahmabadi H. Electrophysiological Characteristics in Pediatric Cochlear Implantation. Indian J Otolaryngol Head Neck Surg 2024; 76:4962-4973. [PMID: 39376381 PMCID: PMC11456142 DOI: 10.1007/s12070-024-04806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 10/09/2024] Open
Abstract
AIMS Cochlear implantation is a potential intervention for individuals with severe to profound hearing loss, in particular in the pediatric population. This literature review aims to comprehensively evaluate the applications of electrophysiological tests in enhancing cochlear implant (CI) outcomes for children. METHODS A literature review searched Medline and PubMed databases for articles on electrophysiological tests in CI children, using the terms "electrophysiological tests," "children," and "cochlear implant." The systematic search leads to 72 eligible texts. RESULTS Electrophysiological tests can be used to test CI children without the need for their active participation. These tests can be helpful in identifying and improving the health of deaf children in various ways, such as determining the CI functional status, the semantic integration effects in CI children, the effect of central auditory structures in speech stimulus processing, the development of lexical-semantic in CI children, and tracking the maturation of the central auditory system. CI enhances central auditory nervous system (CANS) maturation and auditory/language skills. CONCLUSION The quality of electrophysiological tests can be improved to enhance hearing outcome prediction, postoperative physiology understanding, and hearing loss mechanisms. Electrophysiological tests study CANS maturation, identify lesions, aid CI programming, determine prognosis, and treatment outcomes.
Collapse
Affiliation(s)
- Naomi Panah
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Ali Brazin
- Department of Otolaryngology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Clinical Research Development Unit (CRDU), Moradi Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Wang B, Guo X, Wei C, Cao K. Preoperative EABR evaluation of auditory pathway integrity in patients with different etiology and postoperative effect estimation. Eur Arch Otorhinolaryngol 2024; 281:1185-1193. [PMID: 37615702 DOI: 10.1007/s00405-023-08198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES To evaluate the effect of electrical auditory brainstem response (EABR) on the integrity evaluation of auditory pathway and the prediction of postoperative effect of cochlear implantation in patients with different etiology of hearing loss. METHODS A total of 580 patients with neuropathic deafness who underwent cochlear implantation surgery from August 2011 to December 2020 were selected for EABR test. The preoperative EABR waveform was analyzed, and parameters such as V wave amplitude, threshold, latency and interval of each wave, and slope of V wave I/O curve were measured. Neural response telemetry (NRT) test was performed during MAP 1 month after operation, and C and T values of the machine were recorded. RESULTS The total EABR extraction rate was 98.45% among 580 patients, including 100% for the normal structure group and enlarged vestibular aqueduct group (LVAS), 92.44% for other malformed group. The average threshold of V wave in patients with normal cochlear structure was significantly better than the malformation groups (p < 0.05). The total extraction rate of NRT was 78.62%, including 99.72% in the group with normal structure, 95.65% in the LVAS group, 1.85-88.24% in the group with other malformations, and 0% in the cochlear ossification group. The correlation analysis showed a statistically significant correlation between the average preoperative EABR threshold and the C value of NRT. CONCLUSIONS Preoperative EABR could evaluate the integrity of auditory conduction pathway of patients with cochlear implantation and predict the postoperative hearing rehabilitation effect.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China
| | - Xiaohui Guo
- Department of Ophthalmology, the Third Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, 100853, Beijing, China
| | - Chaogang Wei
- Department of Otolaryngology-Head and Neck Surgery, Peking University First Hospital, No. 8 Xishku Street, Xicheng District, 100034, Beijing, China
| | - Keli Cao
- Department of Otolaryngology, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China.
| |
Collapse
|
4
|
Luo W, Zhu H, Chen L, Shi K, Hou X, Sun J, Sun J, Guo X. Electrically evoked auditory brainstem responses in deaf children with cochlear nerve canal stenosis. Acta Otolaryngol 2024; 144:130-135. [PMID: 38634540 DOI: 10.1080/00016489.2024.2333785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Deaf children with cochlear nerve canal stenosis (CNCs) are always considered poor candidates for cochlear implantation. OBJECTIVES To investigate the function of the peripheral auditory pathway in deaf children with CNCs, as revealed by the electrically evoked auditory brainstem response (EABR), and postoperative cochlear implants (CIs) outcomes. MATERIALS AND METHODS Thirteen children with CNCs and 13 children with no inner ear malformations (IEMs) who received CIs were recruited. The EABR evoked by electrical stimulation from the CI electrode was recorded. Postoperative CI outcomes were assessed using Categories of Auditory Performance (CAP) and Speech Intelligibility Rate (SIR). RESULTS Compared with children with no IEMs, children with CNCs showed lower EABR extraction rates, higher thresholds, a longer wave V (eV) latency and lower CAP and SIR scores. The auditory and speech performance was positively correlated with the diameter of the cochlear nerve canal and the number of channels showing wave III (eIII) and eV in children with CNCs. CONCLUSIONS AND SIGNIFICANCE The physiological function of the peripheral auditory pathway in children with CNCs is poorer than that in children with no IEMs. Postoperative auditory and speech abilities may depend on the severity of cochlear nerve malformation and auditory conduction function.
Collapse
Affiliation(s)
- Wenyun Luo
- Wannan Medical College, Wuhu, Anhui, China
| | - Hanyu Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kai Shi
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyan Hou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaotao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|