1
|
Aduriz A, Lanthier I, Lair S, Vergneau-Grosset C. EVALUATION OF MORTALITY CAUSES AND PREVALENCE OF RENAL LESIONS IN ZOO-HOUSED CHAMELEONS: 2011-2022. J Zoo Wildl Med 2024; 55:381-392. [PMID: 38875194 DOI: 10.1638/2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 06/16/2024] Open
Abstract
Of the 202 species of Chamaeleonidae, 38.6% are globally threatened. Currently, nearly a thousand individual chameleons from 36 different species are kept in zoological institutions worldwide. The objectives of this study were to assess the main mortality causes of chameleons in zoological institutions, the prevalence of renal lesions at necropsy, and the environmental factors associated with renal lesions. An online survey was sent to 245 zoological institutions worldwide to collect information about species and sex distribution, necropsy results, and husbandry parameters. Necropsy reports of the last 10 yr were requested from participating institutions (n = 65) when available. Mortality causes were classified into three categories (open diagnosis, infectious, and noninfectious), and noninfectious causes were further subdivided into seven categories (renal, reproductive, myoarthroskeletal, digestive, ophthalmologic, denutrition/multisystemic, and neoplastic). The prevalence of renal lesions was recorded. Multiple linear regression models were used with the prevalence of renal diseases as the dependent variable, and exhibit minimum and maximum hygrometry; exhibit highest and coolest temperature; as well as minimum, mean, and maximum hygrometry of the geographical area as independent variables, combining all chameleon species with similar environmental requirements. Results were obtained for 14 species (n = 412 individuals). The main mortality causes were infectious (46.8%), noninfectious renal (11.4%), and noninfectious reproductive (10.7%) diseases, with all cases of fatal reproductive diseases reported in females. Of the individuals that underwent renal histopathology, 41.7% displayed renal lesions. There was a tendency towards higher renal lesion prevalence in zoos located in areas with lower mean hygrometry (P = 0.05). Further research studies about infectious, renal, and reproductive diseases of Chamaeleonidae are warranted.
Collapse
Affiliation(s)
- Amélie Aduriz
- Faculté de médecine vétérinaire, Département des sciences cliniques, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2 Canada
| | - Isabelle Lanthier
- Département de pathologie et microbiologie, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2 Canada
| | - Stéphane Lair
- Faculté de médecine vétérinaire, Département des sciences cliniques, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2 Canada
| | - Claire Vergneau-Grosset
- Faculté de médecine vétérinaire, Département des sciences cliniques, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2 Canada,
| |
Collapse
|
2
|
Eckhardt F, Pauliny A, Rollings N, Mutschmann F, Olsson M, Kraus C, Kappeler PM. Stress-related changes in leukocyte profiles and telomere shortening in the shortest-lived tetrapod, Furcifer labordi. BMC Evol Biol 2020; 20:160. [PMID: 33261558 PMCID: PMC7709289 DOI: 10.1186/s12862-020-01724-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Life history theory predicts that during the lifespan of an organism, resources are allocated to either growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of different life history strategies and define an organisms' position along a fast-slow continuum in interspecific comparisons. Labord's chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with the shortest reported lifespan (4-9 months). Previous investigations revealed that their lifespan is to some degree dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. However, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions. RESULTS We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. labordi already exhibited relatively short telomeres during the mating season when they were 3-4 months old, and telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild counterparts. CONCLUSION We suggest that environmental stress and the corresponding accelerated telomere attrition have profound effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their relatively early senescence and mortality.
Collapse
Affiliation(s)
- Falk Eckhardt
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Angela Pauliny
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Nicky Rollings
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Mats Olsson
- Department of Biological and Environmental Science, University of Gothenburg, Medicinaregatan 18A, 41390, Göteborg, Sweden
| | - Cornelia Kraus
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Institute of Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|