1
|
Kabir MHB, Kato K. Comprehensive molecular epidemiology of Cryptosporidium species in Japan. Parasitol Int 2024; 102:102909. [PMID: 38945736 DOI: 10.1016/j.parint.2024.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Cryptosporidium species, causing diarrheal illnesses in humans and animals worldwide, are under investigation for their molecular epidemiology in Japan. The study focuses on detecting Cryptosporidium species in humans, animals, water, and the environment, revealing three species in people: C. parvum, C. meleagridis, and C. hominis. Subtype IIa of the C. parvum gp60 gene is prevalent, indicating potential zoonotic transmission. Animal studies identified sixteen species, mainly cattle and pets, with C. parvum (subtype IIa) common in cattle and C. canis and C. felis prevalent in pets. Additionally, C. bovis and C. ryanae were found in cattle and sika deer. Knowledge gaps exist, particularly in water and environmental source typing, with limited research revealing five species and five genotypes, suggesting a significant role of water in transmission. Further research is needed to understand the molecular diversity and transmission dynamics across humans, animals, water, and the environment in Japan.
Collapse
Affiliation(s)
- Mohammad Hazzaz Bin Kabir
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan; Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan.
| |
Collapse
|
2
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Minimal zoonotic risk of cryptosporidiosis and giardiasis from frogs and reptiles. Eur J Protistol 2024; 93:126066. [PMID: 38442435 DOI: 10.1016/j.ejop.2024.126066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The zoonotic potential of the protist parasites Cryptosporidium spp. and Giardia duodenalis in amphibians and reptiles raises public health concerns due to their growing popularity as pets. This review examines the prevalence and diversity of these parasites in wild and captive amphibians and reptiles to better understand the zoonotic risk. Research on Giardia in both groups is limited, and zoonotic forms of Cryptosporidium or Giardia have not been reported in amphibians. Host-adapted Cryptosporidium species dominate in reptiles, albeit some reptiles have been found to carry zoonotic (C. hominis and C. parvum) and rodent-associated (C. tyzzeri, C. muris and C. andersoni) species, primarily through mechanical carriage. Similarly, the limited reports of Giardia duodenalis (assemblages A, B and E) in reptiles may also be due to mechanical carriage. Thus, the available evidence indicates minimal zoonotic risk associated with these organisms in wild and captive frogs and reptiles. The exact transmission routes for these infections within reptile populations remain poorly understood, particularly regarding the importance of mechanical carriage. Although the risk appears minimal, continued research and surveillance efforts are necessary to gain a more comprehensive understanding of the transmission dynamics and ultimately improve our ability to safeguard human and animal health.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
3
|
Xiong Y, Wu Q, Qin X, Yang C, Luo S, He J, Cheng Q, Wu Z. Identification of Pseudomonas aeruginosa From the Skin Ulcer Disease of Crocodile Lizards ( Shinisaurus crocodilurus) and Probiotics as the Control Measure. Front Vet Sci 2022; 9:850684. [PMID: 35529836 PMCID: PMC9069141 DOI: 10.3389/fvets.2022.850684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
The crocodile lizard (Shinisaurus crocodilurus) is an endangered ancient reptile species. Captive breeding is an important conservation measure for the potential restoration and recovery of their wild populations. However, a skin ulcer disease caused by an unknown pathogen has become a serious threat to captive breeding individuals. In the current study, based on microbial isolation, we identified Pseudomonas aeruginosa as the dominant pathogen in skin ulcer disease. Chinese skinks (Plestiodon chinensis) were used to verify the pathogenicity of P. aeruginosa in skin ulcer disease in vivo. As expected, subcutaneous inoculation of P. aeruginosa induced skin disease in healthy skinks and P. aeruginosa was re-isolated from the induced skin ulcers. Therefore, P. aeruginosa, an opportunistic and ubiquitous pathogen that causes a wide range of infections, appears to be the main pathogen of the skin disease affecting crocodile lizards. In the aquaculture industry, probiotics are widely used in the prevention and control of animal diseases caused by such pathogens. Here, we administered probiotics to the breeding crocodile lizards for 6 months. The three experiment groups treated with different kinds of probiotics showed significance at controlling case incidence. Three of the four groups treated with probiotics showed significant disease prevention (Effective Microorganisms mixed probiotics P = 0.0374; Double-dose Effective Microorganisms, P = 0.0299; Bacillus subtilis, P = 0.0140, T-test), and CFUs in the water of the breeding enclosures were also inhibited after probiotics usage (P < 0.001, T-test). Our study demonstrated the role of Pseudomonas aeruginosa in development of skin ulcer disease of crocodile lizards in a local zoo and offered the probiotic-based method for control measurements, which would be of benefit for the conservation of endangered reptiles.
Collapse
Affiliation(s)
- Yi Xiong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
| | - Xudong Qin
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, China
| | - Chengsheng Yang
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, China
| | - Shuyi Luo
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, China
| | - Jiasong He
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, China
| | - Qingzhen Cheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
4
|
Koehler AV, Scheelings TF, Gasser RB. Cryptosporidium cf. avium in an inland-bearded dragon ( Pogona vitticeps) - A case report and review of the literature. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:150-159. [PMID: 33088709 PMCID: PMC7560628 DOI: 10.1016/j.ijppaw.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022]
Abstract
Here, we report the first case of Cryptosporidium cf. avium from an inland bearded dragon (Pogona vitticeps) from a wildlife sanctuary in Victoria, Australia. Molecular characterisation was conducted by PCR-coupled sequencing of regions in the small subunit of nuclear RNA (SSU), actin and large subunit of nuclear RNA (LSU) genes. The sequences obtained grouped with those of C. ornithophilus and other C. avium genotypes/variants originating from reptiles or birds. We discuss this case in relation to the current state of knowledge of C. avium of birds and reptiles, considering provenance and environment (agricultural, pet industry, wildlife, zoo or wildlife park) as well as clinical context, and pathological changes associated with cryptosporidiosis in these host animals. Characterisation of Cryptosporidium cf. avium from an inland bearded dragon (Pogona vitticeps). Molecular differentiation of C. cf. avium from other members of the C. avium clade. Pathogenicity of C. cf. avium seems higher than other members of this clade.
Collapse
Affiliation(s)
- Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences,The University of Melbourne, Parkville, Victoria 3010,Australia
| | - T Franciscus Scheelings
- Faculty of Veterinary and Agricultural Sciences,The University of Melbourne, Parkville, Victoria 3010,Australia.,Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Healesville, Victoria 3777,Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences,The University of Melbourne, Parkville, Victoria 3010,Australia
| |
Collapse
|
5
|
Lewis M, Bartley P, Katzer F, Morrison L, Philbey A, Eatwell K, Walker D. Conjunctival Cryptosporidium avium infection in a captive inland bearded dragon (Pogona vitticeps). J Exot Pet Med 2020. [DOI: 10.1053/j.jepm.2020.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
El-Alfy ES, Nishikawa Y. Cryptosporidium species and cryptosporidiosis in Japan: a literature review and insights into the role played by animals in its transmission. J Vet Med Sci 2020; 82:1051-1067. [PMID: 32536636 PMCID: PMC7468066 DOI: 10.1292/jvms.20-0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium species infect domestic animals, livestock, and humans.
These protozoan parasites are frequently reported as major environmental contaminants in
many countries despite their differing climatic, socioeconomic, and demographic factors.
This review focuses on the research findings that relate to
Cryptosporidium epidemiology, genetic diversity, and associated risk
factors relating to animals, contaminated water sources, and humans in Japan. Adequate
knowledge of these factors is essential for understanding the economic and public health
importance of cryptosporidiosis in Japan so that effective control strategies against it
are implemented. Cryptosporidium infections are highly prevalent in
animals in Japan. Among the different animal species, cattle infections stand out because
of their economic importance and zoonotic potential. Living circumstances in Japan
restrain Cryptosporidium transmission between humans, but there is
evidence to suggest that animals, especially those in close contact with humans, can be
potential sources of human infections. Water sampling studies have provided clues about
how environmental contamination with Cryptosporidium oocysts can cause
infections in livestock and wild animals. There is some evidence of person-to-person
transmission of cryptosporidiosis, but only occasionally and under certain circumstances.
By identifying the major role played by animals in Cryptosporidium
transmission to people in Japan, we highlight the urgent need for disease control against
this pathogen.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.,Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|