1
|
Arrabal JP, Moré G, Orozco MM, Helman E, Notarnicola J, Basso W, Hartmann BB, Schapira A, Minatel L. A putative new Besnoitia species in the southern black-eared opossum Didelphis aurita. Int J Parasitol Parasites Wildl 2024; 25:100998. [PMID: 39376793 PMCID: PMC11456783 DOI: 10.1016/j.ijppaw.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
Besnoitia spp. are cyst-forming coccidian parasites with a broad host range, infecting various wild and domestic animal species. Northamerican opossums (Didelphis virginiana) are severely affected by the infection with B. darlingi. This study presents a case of infection with Besnoitia in a road-killed female southern black-eared opossum (Didelphis aurita) in Misiones, Argentina. Many 0.5-1 mm cysts were observed in several muscles and visceral organs and were microscopically identified in skeletal muscles, tongue, and heart. Histological analysis disclosed multiple spherical cysts with a myriad of bradyzoites like-cells and a well-defined cyst wall. A small number of degenerate and ruptured cysts, surrounded by mild to moderate inflammation were observed. Genomic DNA from an individual cyst and muscle was extracted and ITS1 marker and 18S rRNA gene fragments from sarcocystid protozoa were successfully amplified by PCR and sequenced. The 18S sequence exhibited 100% identity with sequences of B. darlingi and B. oryctofelisi. Comparison of the complete ITS1 sequence (259 bp) revealed an identity of 99.2% with B. oryctofelisi and 97.7% with B. darlingi. This result together with the phylogeny positioning, suggest that the Besnoitia sp. in the present case differ from B. darlingi, being closely related with B. oryctofelisi.
Collapse
Affiliation(s)
- Juan Pablo Arrabal
- Instituto de Biología Subtropical IBS-CONICET, Universidad Nacional de Misiones- UNaM, Av. Tres Fronteras 183, Puerto Iguazú, CP 3370, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gastón Moré
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunoparasitología (LAINPA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, (B1904), La Plata, Buenos Aires, Argentina
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| | - María Marcela Orozco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Guiraldes, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Elisa Helman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunoparasitología (LAINPA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, (B1904), La Plata, Buenos Aires, Argentina
- Grupo de Bioestadística Aplicada (GBA), Instituto de Cálculo Numérico Rebeca Cherep de Guber, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Intendente Güiraldes 2160, Ciudad Universitaria, Edificio 0 + Infinito (C1428EGA), Buenos Aires, Argentina
| | - Juliana Notarnicola
- Instituto de Biología Subtropical IBS-CONICET, Universidad Nacional de Misiones- UNaM, Av. Tres Fronteras 183, Puerto Iguazú, CP 3370, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Walter Basso
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland
| | - Bárbara Betina Hartmann
- Instituto de Biología Subtropical IBS-CONICET, Universidad Nacional de Misiones- UNaM, Av. Tres Fronteras 183, Puerto Iguazú, CP 3370, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Schapira
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Chorroarín 280, (C1427CWO), Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Minatel
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Chorroarín 280, (C1427CWO), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Wijburg SR, Montizaan MGE, Kik MJL, Joeres M, Cardron G, Luttermann C, Maas M, Maksimov P, Opsteegh M, Schares G. Drivers of infection with Toxoplasma gondii genotype type II in Eurasian red squirrels (Sciurus vulgaris). Parasit Vectors 2024; 17:30. [PMID: 38263195 PMCID: PMC10804655 DOI: 10.1186/s13071-023-06068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND In September 2014, there was sudden upsurge in the number of Eurasian red squirrels (Sciurus vulgaris) found dead in the Netherlands. High infection levels with the parasite Toxoplasma gondii were demonstrated, but it was unclear what had caused this increase in cases of fatal toxoplasmosis. In the present study, we aimed to gain more knowledge on the pathology and prevalence of T. gondii infections in Eurasian red squirrels in the Netherlands, on the T. gondii genotypes present, and on the determinants of the spatiotemporal variability in these T. gondii infections. The presence of the closely related parasite Hammondia hammondi was also determined. METHODS Eurasian red squirrels that were found dead in the wild or that had died in wildlife rescue centres in the Netherlands over a period of seven years (2014-2020) were examined. Quantitative real-time polymerase chain reaction was conducted to analyse tissue samples for the presence of T. gondii and H. hammondi DNA. Toxoplasma gondii-positive samples were subjected to microsatellite typing and cluster analysis. A mixed logistic regression was used to identify climatic and other environmental predictors of T. gondii infection in the squirrels. RESULTS A total of 178 squirrels were examined (49/178 T. gondii positive, 5/178 H. hammondi positive). Inflammation of multiple organs was the cause of death in 29 squirrels, of which 24 were also T. gondii polymerase chain reaction positive. Toxoplasma gondii infection was positively associated with pneumonia and hepatitis. Microsatellite typing revealed only T. gondii type II alleles. Toxoplasma gondii infection rates showed a positive correlation with the number of days of heavy rainfall in the previous 12 months. Conversely, they showed a negative association with the number of hot days within the 2-week period preceding the sampling date, as well as with the percentage of deciduous forest cover at the sampling site. CONCLUSIONS Toxoplasma gondii infection in the squirrels appeared to pose a significant risk of acute mortality. The T. gondii genotype detected in this study is commonly found across Europe. The reasons for the unusually high infection rates and severe symptoms of these squirrels from the Netherlands remain unclear. The prevalence of T. gondii in the deceased squirrels was linked to specific environmental factors. However, whether the increase in the number of dead squirrels indicated a higher environmental contamination with T. gondii oocysts has yet to be established.
Collapse
Affiliation(s)
- Sara R Wijburg
- Centre for Infectious Disease Control, Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 1, 3720 BA, Bilthoven, The Netherlands
- Dutch Wildlife Health Centre, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Margriet G E Montizaan
- Dutch Wildlife Health Centre, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Marja J L Kik
- Dutch Wildlife Health Centre, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Department Biomolecular Health Sciences, Pathology, Veterinair Pathologisch Diagnostisch Centrum, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Maike Joeres
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Garance Cardron
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Miriam Maas
- Centre for Infectious Disease Control, Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 1, 3720 BA, Bilthoven, The Netherlands
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Marieke Opsteegh
- Centre for Infectious Disease Control, Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 1, 3720 BA, Bilthoven, The Netherlands
| | - Gereon Schares
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
3
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Seeger J, Raqué L, Ulrich R, Daugschies A, Fietz SA. Establishment and validation of a guinea pig model for human congenital toxoplasmosis. Parasit Vectors 2021; 14:389. [PMID: 34362413 PMCID: PMC8344189 DOI: 10.1186/s13071-021-04890-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection in humans and animals may lead to severe symptoms in the offspring, especially in the brain. A suitable animal model for human congenital toxoplasmosis is currently lacking. The aim of this study is to establish and validate the guinea pig as a model for human congenital toxoplasmosis by investigating the impact of the T. gondii infection dose, the duration of infection and the gestational stage at infection on the seroconversion, survival rate of dams, fate of the offspring, T. gondii DNA loads in various offspring tissues and organs and the integrity of the offspring brain. Methods Pregnant guinea pigs were infected with three different doses (10, 100, 500 oocysts) of T. gondii strain ME49 at three different time points during gestation (15, 30, 48 days post-conception). Serum of dams was tested for the presence of T. gondii antibodies using immunoblotting. T. gondii DNA levels in the dam and offspring were determined by qPCR. Offspring brains were examined histologically. Results We found the survival rate of dams and fate of the offspring to be highly dependent on the T. gondii infection dose with an inoculation of 500 oocysts ending lethally for all respective offspring. Moreover, both parameters differ depending on the gestational stage at infection with infection in the first and third trimester of gestation resulting in a high offspring mortality rate. The duration of infection was found to substantially impact the seroconversion rate of dams with the probability of seroconversion exceeding 50% after day 20 post-infection. Furthermore, the infection duration of dams influenced the T. gondii DNA loads in the offspring and the integrity of offspring brain. Highest DNA levels were found in the offspring brain of dams infected for ≥ 34 days. Conclusion This study contributes to establishing the guinea pig as a suitable model for human congenital toxoplasmosis and thus lays the foundation for using the guinea pig as a suitable animal model to study scientific questions of high topicality and clinical significance, which address the pathogenesis, diagnosis, therapy and prognosis of congenital toxoplasmosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04890-4.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Lisa Raqué
- Veterinary Practice Raqué, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
Beck B, Grochow T, Schares G, Blaga R, Le Roux D, Bangoura B, Daugschies A, Fietz SA. Burden and regional distribution of Toxoplasma gondii cysts in the brain of COBB 500 broiler chickens following chronic infection with 76K strain. Vet Parasitol 2021; 296:109497. [PMID: 34147768 DOI: 10.1016/j.vetpar.2021.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Toxoplasmosis is a worldwide zoonosis caused by the obligate intracellular apicomplexan parasite Toxoplasma gondii (T. gondii). Chickens are ground-feeders and represent, especially if free-range, important intermediate hosts in the epidemiology of toxoplasmosis and are used as sentinels of environmental contamination with T. gondii oocysts. Until now, little is known about the burden and regional distribution of T. gondii cysts in the chicken brain. It was therefore the aim of this study to investigate the abundance and specific distribution of T. gondii cysts within the chicken brain following chronic infection with a type II strain (76 K) of T. gondii. A total of 29 chickens were included in the study and divided into control group (n = 9) and two different infection groups, a low dose (n = 10) and a high dose (n = 10) group, which were orally inoculated with 1500 or 150,000 T. gondii oocysts per animal, respectively. Seroconversion was detected in the majority of chickens of the high dose group, but not in the animals of the low dose and the control group. Moreover, T. gondii DNA was detected most frequently in the brain and more frequently in the heart than in liver, spleen, thigh and pectoral muscle using qPCR analysis. The number of T. gondii cysts, quantified in the chicken brain using histological analysis, seems to be considerably lower as compared to studies in rodents, which might explain why T. gondii infected chickens very rarely, if at all, develop neurological deficits. Similar to observations in mice, in which no lateralisation for T. gondii cysts was reported, T. gondii cysts were distributed nearly equally between the left and right chicken brain hemispheres. When different brain regions (fore-, mid- and hindbrain) were compared, all T. gondii cysts were located in the forebrain with the overwhelming majority of these cysts being present in the telencephalic pallium and subpallium. More studies including different strains and higher doses of T. gondii are needed in order to precisely evaluate its cyst burden and regional distribution in the chicken brain. Together, our findings provide insights into the course of T. gondii infection in chickens and are important to understand the differences of chronic T. gondii infection in the chicken and mammalian brain.
Collapse
Affiliation(s)
- Britta Beck
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany; Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Thomas Grochow
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany; Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Institute of Epidemiology, 17493, Greifswald-Insel Riems, Germany
| | - Radu Blaga
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Delphine Le Roux
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Berit Bangoura
- Wyoming State Veterinary Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY, 82070, USA
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Schares G, Joeres M, Rachel F, Tuschy M, Czirják GÁ, Maksimov P, Conraths FJ, Wachter B. Molecular analysis suggests that Namibian cheetahs (Acinonyx jubatus) are definitive hosts of a so far undescribed Besnoitia species. Parasit Vectors 2021; 14:201. [PMID: 33853647 PMCID: PMC8048190 DOI: 10.1186/s13071-021-04697-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background Besnoitia darlingi, B. neotomofelis and B. oryctofelisi are closely related coccidian parasites with felids as definitive hosts. These parasites use a variety of animal species as intermediate hosts. North American opossums (Didelphis virginiana), North American southern plains woodrats (Neotoma micropus) and South American domestic rabbits (Oryctolagus cuniculus) are intermediate hosts of B. darlingi, B. neotomofelis and B. oryctofelisi, respectively. Based on conserved regions in the internal transcribed spacer-1 (ITS1) sequence of the ribosomal DNA (rDNA), a real-time PCR for a sensitive detection of these Besnoitia spp. in tissues of intermediate hosts and faeces of definitive hosts has recently been established. Available sequence data suggest that species such as B. akodoni and B. jellisoni are also covered by this real-time PCR. It has been hypothesised that additional Besnoitia spp. exist worldwide that are closely related to B. darlingi or B. darlingi-like parasites (B. neotomofelis, B. oryctofelisi, B. akodoni or B. jellisoni). Also related, but not as closely, is B. besnoiti, the cause of bovine besnoitiosis. Methods Faecal samples from two free-ranging cheetahs (Acinonyx jubatus) from Namibia that had previously tested positive for coccidian parasites by coproscopy were used for this study. A conventional PCR verified the presence of coccidian parasite DNA. To clarify the identity of these coccidia, the faecal DNA samples were further characterised by species-specific PCRs and Sanger sequencing. Results One of the samples tested positive for B. darlingi or B. darlingi-like parasites by real-time PCR, while no other coccidian parasites, including Toxoplasma gondii, Hammondia hammondi, H. heydorni, B. besnoiti and Neospora caninum, were detected in the two samples. The rDNA of the B. darlingi-like parasite was amplified and partially sequenced. Comparison with existing sequences in GenBank revealed a close relationship to other Besnoitia spp., but also showed clear divergences. Conclusions Our results suggest that a so far unknown Besnoitia species exists in Namibian wildlife, which is closely related to B. darlingi, B. neotomofelis, B. oryctofelisi, B. akodoni or B. jellisoni. The cheetah appears to be the definitive host of this newly discovered parasite, while prey species of the cheetah may act as intermediate hosts. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04697-3.
Collapse
Affiliation(s)
- Gereon Schares
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Maike Joeres
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Franziska Rachel
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Mareen Tuschy
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Street 17, 10315, Berlin, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Street 17, 10315, Berlin, Germany
| |
Collapse
|
7
|
Schares G, Globokar Vrhovec M, Tuschy M, Joeres M, Bärwald A, Koudela B, Dubey JP, Maksimov P, Conraths FJ. A real-time quantitative polymerase chain reaction for the specific detection of Hammondia hammondi and its differentiation from Toxoplasma gondii. Parasit Vectors 2021; 14:78. [PMID: 33494796 PMCID: PMC7830817 DOI: 10.1186/s13071-020-04571-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Hammondia hammondi and Toxoplasma gondii are closely related protozoan parasites, but only T. gondii is zoonotic. Both species use felids as definitive hosts and cannot be differentiated by oocyst morphology. In T. gondii, a 529-base pair (bp) repetitive element (TgREP-529) is of utmost diagnostic importance for polymerase chain reaction (PCR) diagnostic tests. We identified a similar repetitive region in the H. hammondi genome (HhamREP-529). Methods Based on reported sequences, primers and probes were selected in silico and optimal primer probe combinations were explored, also by including previously published primers. The analytical sensitivity was tested using serial dilutions of oocyst DNA. For testing analytical specificity, DNA isolated from several related species was used as controls. The newly established TaqMan PCR (Hham-qPCR1) was applied to tissues collected from H. hammondi-infected gamma-interferon gene knockout (GKO) mice at varying time points post-infection. Results Ten forward and six reverse primers were tested in varying combinations. Four potentially suitable dual-labelled probes were selected. One set based on the primer pair (Hham275F, Hham81R) and the probe (Hham222P) yielded optimal results. In addition to excellent analytic specificity, the assay revealed an analytical sensitivity of genome equivalents of less than one oocyst. Investigation of the tissue distribution in GKO mice revealed the presence of parasite DNA in all examined organs, but to a varying extent, suggesting 100- to 10,000-fold differences in parasitic loads between tissues in the chronic state of infection, 42 days post-infection. Discussion The use of the 529-bp repeat of H. hammondi is suitable for establishing a quantitative real-time PCR assay, because this repeat probably exists about 200 times in the genome of a single organism, like its counterpart in T. gondii. Although there were enough sequence data available, only a few of the primers predicted in silico revealed sufficient amplification; the identification of a suitable probe was also difficult. This is in accord with our previous observations on considerable variability in the 529-bp repetitive element of H. hammondi. Conclusions The H. hammondi real-time PCR represents an important novel diagnostic tool for epidemiological and cell biological studies on H. hammondi and related parasites. ![]()
Collapse
Affiliation(s)
- Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | | | - Mareen Tuschy
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Maike Joeres
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Andrea Bärwald
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bretislav Koudela
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno, 612 42, Czech Republic.,Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
| | - Jitender P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agriculture Research Service, United States Department of Agriculture, Building 1001, Beltsville, MD, 20705-2350, USA
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Franz J Conraths
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|