1
|
Shaw AK, Bisesi AT, Wojan C, Kim D, Torstenson M, Naven Narayanan, Lutz P, Ales R, Shao C. Six personas to adopt when framing theoretical research questions in biology. Proc Biol Sci 2024; 291:20240803. [PMID: 39288809 PMCID: PMC11407860 DOI: 10.1098/rspb.2024.0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Theory is a critical component of the biological research process, and complements observational and experimental approaches. However, most biologists receive little training on how to frame a theoretical question and, thus, how to evaluate when theory has successfully answered the research question. Here, we develop a guide with six verbal framings for theoretical models in biology. These correspond to different personas one might adopt as a theorist: 'Advocate', 'Explainer', 'Instigator', 'Mediator', 'Semantician' and 'Tinkerer'. These personas are drawn from combinations of two starting points (pattern or mechanism) and three foci (novelty, robustness or conflict). We illustrate each of these framings with examples of specific theoretical questions, by drawing on recent theoretical papers in the fields of ecology and evolutionary biology. We show how the same research topic can be approached from slightly different perspectives, using different framings. We show how clarifying a model's framing can debunk common misconceptions of theory: that simplifying assumptions are bad, more detail is always better, models show anything you want and modelling requires substantial maths knowledge. Finally, we provide a roadmap that researchers new to theoretical research can use to identify a framing to serve as a blueprint for their own theoretical research projects.
Collapse
Affiliation(s)
- Allison K Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Ave T Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Chris Wojan
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Dongmin Kim
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Martha Torstenson
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Naven Narayanan
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Peter Lutz
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
- Department of Computer Science, University of Minnesota , Minneapolis, MN 55455, USA
| | - Ruby Ales
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
- Department of Mathematics, University of Minnesota , Minneapolis, MN 55455, USA
| | - Cynthia Shao
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
- Department of Mathematics, University of Minnesota , Minneapolis, MN 55455, USA
- Department of Biochemistry, University of Minnesota , Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Anders JL, Davey M, Van Moorter B, Fossøy F, Boessenkool S, Solberg EJ, Meisingset EL, Mysterud A, Rolandsen CM. Elucidating nematode diversity and prevalence in moose across a wide latitudinal gradient using DNA metabarcoding. Int J Parasitol Parasites Wildl 2024; 24:100962. [PMID: 39099677 PMCID: PMC11295938 DOI: 10.1016/j.ijppaw.2024.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Parasitic nematodes are ubiquitous and can negatively impact their host by reducing fecundity or increasing mortality, yet the driver of variation in the parasite community across a wildlife host's geographic distribution remains elusive for most species. Based on an extensive collection of fecal samples (n = 264) from GPS marked moose (Alces alces), we used DNA metabarcoding to characterize the individual (sex, age class) and seasonal parasitic nematode community in relation to habitat use and migration behavior in five populations distributed across a wide latitudinal gradient (59.6°N to 70.5°N) in Norway. We detected 21 distinct nematode taxa with the six most common being Ostertagia spp., Nematodirella spp., Trichostongylus spp., T. axei, Elaphostrongylus alces, and an unclassified Strongylida. There was higher prevalence of livestock parasites in areas with larger sheep populations indicating a higher risk of spillover events. The individual level nematode richness was mostly consistent across study areas, while the number and type of nematode taxa detected at each study area varied considerably but did not follow a latitudinal gradient. While migration distance affected nematode beta-diversity across all sites, it had a positive effect on richness at only two of the five study areas suggesting population specific effects. Unexpectedly, nematode richness was higher in winter than summer when very few nematodes were detected. Here we provide the first extensive description of the parasitic nematode community of moose across a wide latitudinal range. Overall, the population-specific impact of migration on parasitism across the distribution range and variation in sympatry with other ruminants suggest local characteristics affect host-parasite relationships.
Collapse
Affiliation(s)
- Jason L. Anders
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Marie Davey
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Bram Van Moorter
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, 0855 Oslo, Norway
| | - Frode Fossøy
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Sanne Boessenkool
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Erling J. Solberg
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Erling L. Meisingset
- Department of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, Tingvoll gard, NO-6630, Tingvoll, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Christer M. Rolandsen
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| |
Collapse
|
3
|
Shaw AK, Levet M, Binning SA. A unified evolutionary framework for understanding parasite infection and host migratory behaviour. Ecol Lett 2023; 26:1987-2002. [PMID: 37706582 DOI: 10.1111/ele.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 09/15/2023]
Abstract
Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite-migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration-infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration.
Collapse
Affiliation(s)
- Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Berg JE, Eacker DR, Hebblewhite M, Merrill EH. Summer elk calf survival in a partially migratory population. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jodi E. Berg
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| | | | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W. A. Franke College of Forestry and Conservation University of Montana Missoula MT 59812 USA
| | - Evelyn H. Merrill
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| |
Collapse
|
5
|
Binning SA, Craft ME, Zuk M, Shaw AK. How to study parasites and host migration: a roadmap for empiricists. Biol Rev Camb Philos Soc 2022; 97:1161-1178. [DOI: 10.1111/brv.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra A. Binning
- Département de sciences biologiques Université de Montréal 1375 Ave. Thérèse‐Lavoie‐Roux Montréal QC H2V 0B3 Canada
| | - Meggan E. Craft
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| | - Marlene Zuk
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| | - Allison K. Shaw
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| |
Collapse
|
6
|
Martin HW, Hebblewhite M, Merrill EH. Large herbivores in a partially migratory population search for the ideal free home. Ecology 2022; 103:e3652. [PMID: 35084736 PMCID: PMC10162400 DOI: 10.1002/ecy.3652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
Migration is a tactic used across taxa to access resources in temporally heterogenous landscapes. Populations that migrate can attain higher abundances because such movements allow access to higher quality resources, or reduction in predation risk resulting in increased fitness. However, most migratory species occur in partially migratory populations, a mix of migratory and non-migratory individuals. It is thought that the portion of migrants in a partial migration population is maintained either through 1) a population-level evolutionary stable state where counteracting density-dependent vital rates act on migrants and residents to balance fitness, or 2) conditional migration, where the propensity to migrate is influenced by the individual's state. However, in many respects, migration is also a form of habitat selection and the proportion of migrants and residents may be the result of density-dependent habitat selection. Here, we test whether the theory of Ideal Free Distribution (IFD) can explain the coexistence of different migratory tactics in a partially migratory population. IFD predicts individuals exhibit density-dependent vital rates and select different migratory tactics to maximize individual fitness resulting in equal fitness (λ) between tactics. We tested the predictions of IFD in a partially migratory elk population that declined by 70% with 19 years of demographic data and migratory tactic switching rates from >300 individuals. We found evidence of density dependence for resident pregnancy and adult female survival providing a fitness incentive to switch tactics. Despite differences in vital rates between migratory tactics, mean λ (fitness) was equal. However, as predicted by the IFD, individuals switched tactics toward those of higher fitness. Our analysis reveals that partial migration may be driven by tactic selection that follows the ideal free distribution. These findings reinforce that migration across taxa may be a polymorphic behavior in large herbivores where migratory tactic selection is determined by differential costs and benefits, mediated by density-dependence.
Collapse
Affiliation(s)
- Hans W Martin
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Mark Hebblewhite
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Evelyn H Merrill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Normandeau J, Cassady St. Clair C, Kutz SJ, Hebblewhite M, Merrill EH. What makes elk tick: winter tick (Dermacentor albipictus) grooming behavior in wild elk (Cervus canadensis). J Mammal 2022. [DOI: 10.1093/jmammal/gyab155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Ungulates groom to remove ectoparasites but grooming may interfere with foraging, vigilance, and rumination, and it is possible that these effects differ among migratory tactics due to differences in parasite infestations. We compared the effects of grooming for winter ticks (Dermacentor albipictus) on winter foraging behavior by migrating and resident elk (Cervus canadensis) in the partially migratory population at the Ya Ha Tinda, adjacent to Banff National Park, Canada. We used hair loss on the dorsal shoulder area (“withers”) measured from photographic images as an index of tick infestation of individual elk. We conducted 594 focal observations on 48 radio-collared and 18 uncollared individuals that were uniquely identifiable from ear-tags (N = 66) in 2019 to assess whether grooming for ticks in winter reduced time spent foraging, ruminating, or being vigilant. Because rubbing or hair loss from radio-collars may influence tick infestations and behavior, we controlled for whether elk were collared or uncollared in our analyses. Neck hair loss was 3−5% greater in collared elk than uncollared elk, but neither withers hair loss nor time spent grooming differed. Grooming occurred during 42% of the observations but grooming comprised only ~1% of observation time. Nevertheless, 40% of all grooming was observed during resting, and grooming interrupted vigilance behavior ~8 times more than foraging. We found no differences among elk following different migratory tactics in time spent grooming or in other behaviors, but one of the two groups of migrant elk had higher withers hair loss. Our results suggest winter ticks may have slight effects on elk relative to other ungulates, particularly moose (Alces alces), in North America.
Collapse
Affiliation(s)
- Jacalyn Normandeau
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Colleen Cassady St. Clair
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana 59812, USA
| | - Evelyn H Merrill
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|