1
|
Stutz R, Dörge DD, Schantz AV, Peter N, Klimpel S. Environmental modulators on the development of the raccoon roundworm ( Baylisascaris procyonis): Effects of temperature on the embryogenesis. Int J Parasitol Parasites Wildl 2024; 25:100997. [PMID: 39385814 PMCID: PMC11462363 DOI: 10.1016/j.ijppaw.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Members of the Ascarididae family are common zoonotic pathogens in humans and play an economic role in domestic and livestock animal husbandry. This family includes the obligatorily parasitic nematodes of the genus Baylisascaris, with the raccoon roundworm Baylisascaris procyonis being the most well-known representative. B. procyonis uses the raccoon (Procyon lotor) as its primary host and can utilise a broad range of mammals as paratenic hosts. Sexual reproduction of the adult nematodes occurs in the small intestine. Eggs are excreted into the environment through feces, where they develop into the infectious stage under suitable conditions within a few days to weeks. Infection of primary and paratenic hosts occurs through the oral ingestion of these infectious eggs. Raccoons can also become infected by ingesting infected paratenic hosts. Humans serve as accidental hosts and can suffer significant damage to organ tissues, the visual system, and the central nervous system after ingesting infectious eggs. The aim of the study was to investigate the effects of ambient temperature on embryonic development and to document the morphological changes during embryogenesis. Live specimens were collected from the raccoon intestine and incubated. Single-celled eggs were collected during this process. The eggs were decorticated and then preserved. To test the effects of ambient temperature, the eggs were incubated at 5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, 35 °C, and 38 °C and monitored at 24-h intervals for their developmental stages. Detailed photographic documentation of the developmental stages was conducted. An increase in ambient temperature led to a reduction in development time. The temperature range within which embryogenesis proceeded to the L1 larval stage was between 10 °C and 30 °C. Incubation at 5 °C did not produce L1 larvae even after 11 months. Incubation at 35 °C and 38 °C resulted in the complete degeneration of the eggs before reaching the L1 larval stage.
Collapse
Affiliation(s)
- Robin Stutz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt, Main, D-60438, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt, Main, D-60325, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt, Main, D-60438, Germany
| | - Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt, Main, D-60438, Germany
| | - Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt, Main, D-60438, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt, Main, D-60438, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt, Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Frankfurt, Main, D-60325, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Giessen, D-35392, Germany
| |
Collapse
|
2
|
Peter N, Schantz AV, Dörge DD, Steinhoff A, Cunze S, Skaljic A, Klimpel S. Evidence of predation pressure on sensitive species by raccoons based on parasitological studies. Int J Parasitol Parasites Wildl 2024; 24:100935. [PMID: 38638363 PMCID: PMC11024658 DOI: 10.1016/j.ijppaw.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
To demonstrate predation and potential impacts of raccoons on various species, a total of 108 raccoons from aquatic-associated nature reserves and natural areas in three federal states of Germany, Hesse (n = 36), Saxony-Anhalt (n = 36) and Brandenburg (n = 36), were investigated from a dietary ecological perspective in the present study. Fecal analyses and stomach content examinations were conducted for this purpose. Additionally, as a supplementary method for analyzing the dietary spectrum of raccoons, the parasite fauna was considered, as metazoan parasites, in particular, can serve as indicators for the species and origin of food organisms. While stomach content analyses allow for a detailed recording of trophic relationships solely at the time of sampling, parasitological examinations enable inferences about more distant interaction processes. With their different developmental stages and heteroxenous life cycles involving specific, sometimes obligate, intermediate hosts, they utilize the food web to reach their definitive host. The results of this study clearly demonstrate that spawning areas of amphibians and reptiles were predominantly utilized as food resources by raccoons in the study areas. Thus, common toad (Bufo bufo), common newt (Lissotriton vulgaris), grass frog (Rana temporaria), and grass snake (Natrix natrix) were identified as food organisms for raccoons. The detection of the parasite species Euryhelmis squamula, Isthmiophora melis, and Physocephalus sexalatus with partially high infestation rates also suggests that both amphibians and reptiles belong to the established dietary components of raccoons from an ecological perspective, as amphibians and reptiles are obligate intermediate hosts in the respective parasitic life cycles of the detected parasites. The study clearly demonstrates that raccoons have a significant impact on occurrence-sensitive animal species in certain areas and, as an invasive species, can exert a negative influence on native species and ecosystems.
Collapse
Affiliation(s)
- Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Anne Steinhoff
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sarah Cunze
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Ajdin Skaljic
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt/Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325, Frankfurt/Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| |
Collapse
|
3
|
Rojas A, Germitsch N, Oren S, Sazmand A, Deak G. Wildlife parasitology: sample collection and processing, diagnostic constraints, and methodological challenges in terrestrial carnivores. Parasit Vectors 2024; 17:127. [PMID: 38481271 PMCID: PMC10938792 DOI: 10.1186/s13071-024-06226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Wild terrestrial carnivores play a crucial role as reservoir, maintenance, and spillover hosts for a wide parasite variety. They may harbor, shed, and transmit zoonotic parasites and parasites of veterinary importance for domestic hosts. Although wild carnivores are globally distributed and comprise many different species, some living in close proximity to human settlements, only a few studies have investigated parasites of wild terrestrial carnivores using non-specific techniques. Access to samples of wild carnivores may be challenging as some species are protected, and others are secretive, possibly explaining the data paucity. Considering the importance of wild carnivores' health and ecological role, combined with the lack of specific diagnostic methodologies, this review aims to offer an overview of the diagnostic methods for parasite investigation in wild terrestrial carnivores, providing the precise techniques for collection and analysis of fecal, blood, and tissue samples, the environmental impact on said samples, and the limitations researchers currently face in analyzing samples of wild terrestrial carnivores. In addition, this paper offers some crucial information on how different environmental factors affect parasite detection postmortem and how insects can be used to estimate the time of death with a specific highlight on insect larvae. The paper contains a literature review of available procedures and emphasizes the need for diagnostic method standardization in wild terrestrial carnivores.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San José, 11501-2060, Costa Rica.
- Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, 11501-2060, Costa Rica.
| | - Nina Germitsch
- Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PEI, C1A 4P3, Canada.
| | - Stephanie Oren
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, 6517658978, Iran.
| | - Georgiana Deak
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Chai JY, Jung BK. Epidemiology and Geographical Distribution of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:443-505. [PMID: 39008273 DOI: 10.1007/978-3-031-60121-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes infecting humans are more than 109 species that belong to 49 genera all over the world. According to their habitat in the definitive hosts, they are classified as 6 blood flukes (Schistosoma japonicum. S. mekongi, S. malayensis, S. mansoni, S. intercalatum, and S. haematobium), 15 liver flukes (Fasciola hepatica, F. gigantica, Clonorchis sinensis, Opisthorchis viverrini, O. felineus, Dicrocoelium dendriticum, D. hospes, Metorchis bilis, M. conjunctus, M. orientalis, Amphimerus sp., A. noverca, A. pseudofelineus, Pseudamphistomum truncatum, and P. aethiopicum), nine lung flukes (Paragonimus westermani, P. heterotremus, P. skrjabini, P. skrjabini miyazakii, P. kellicotti, P. mexicanus, P. africanus, P. uterobilateralis, and P. gondwanensis), 30 heterophyid intestinal flukes (Metagonimus yokogawai, M. takahashii, M. miyatai, M. suifunensis, M. katsuradai, M. pusillus, M. minutus, Heterophyes heterophyes, H. nocens, H. dispar, Haplorchis taichui, H. pumilio, H. yokogawai, H. vanissinus, Centrocestus formosanus, C. armatus, C. cuspidatus, C. kurokawai, Procerovum calderoni, P. varium, Pygidiopsis genata, P. summa, Stictodora fuscata, S. lari, Stellantchasmus falcatus, Heterophyopsis continua, Acanthotrema felis, Apophallus donicus, Ascocotyle longa, and Cryptocotyle lingua), 24 echinostome intestinal flukes (Echinostoma revolutum, E. cinetorchis, E. mekongi, E. paraensei, E. ilocanum, E. lindoense, E. macrorchis, E. angustitestis, E. aegyptica, Isthmiophora hortensis, I. melis, Echinochasmus japonicus, E. perfoliatus, E. lilliputanus, E. caninus, E. jiufoensis, E. fujianensis, Artyfechinostomum malayanum, A. sufrartyfex, A. oraoni, Acanthoparyphium tyosenense, Echinoparymphium recurvatum, Himasthla muehlensi, and Hypoderaeum conoideum), 23 miscellaneous intestinal flukes (Brachylaima cribbi, Caprimolgorchis molenkampi, Phaneropsolus bonnei, P. spinicirrus, Cotylurus japonicus, Fasciolopsis buski, Gastrodiscoides hominis, Fischoederius elongatus, Watsonius watsoni, Gymnophalloides seoi, Gynaecotyla squatarolae, Microphallus brevicaeca, Isoparorchis hypselobagri, Nanophyetus salmincola, N. schikobalowi, Neodiplostomum seoulense, Fibricola cratera, Plagiorchis muris, P. vespertilionis, P. harinasutai, P. javensis, P. philippinensis, and Prohemistomum vivax), one throat fluke (Clinostomum complanatum), and one pancreatic fluke (Eurytrema pancreaticum). The mode of transmission to humans includes contact with cercariae contaminated in water (schistosomes) or ingestion of raw or improperly cooked food, including fish (liver flukes, heterophyid flukes, echinostomes, and throat flukes), snails (echinostomes, brachylaimids, and gymnophallid flukes), amphibia, reptiles (neodiplostomes), aquatic vegetables (fasciolids and amphistomes), and insect larvae or adults (lecithodendriids, plagiorchiids, and pancreatic flukes). Praziquantel has been proven to be highly effective against almost all kinds of trematode infections except Fasciola spp. Epidemiological surveys and detection of human infections are required for a better understanding of the prevalence, intensity of infection, and geographical distribution of each trematode species.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ulrich R. [Zoonoses in endemic, free-ranging mammals]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:208-214. [PMID: 37987818 DOI: 10.1007/s00292-023-01270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Zoonoses are diseases and infections that can be transmitted naturally between animals and humans. Direct and indirect contact of humans with wildlife occur during hunting activities, when diseased wildlife is found and treated, and in shared fields, forests, parks, gardens, and homes. Zoonoses can only be understood and controlled when ecosystems, animals, and humans are considered holistically. OBJECTIVE This paper presents important zoonotic pathogens that are currently present in wild mammals as reservoirs in Germany. MATERIAL AND METHODS The literature was searched to determine the prevalence of zoonotic pathogens currently occurring in wild mammals. RESULTS Viral zoonotic agents currently present in free-ranging, mammalian animals in Germany as reservoirs of natural origin are bornaviruses, lyssaviruses, hepatitis E virus genotype 3, and Puumala orthohantavirus. Bacterial zoonotic agents beyond typical wound and foodborne pathogens include Brucella suis Biovar 2, Francisella tularensis ssp. holarctica, Leptospira interrogans sensu latu, Mycobacterium caprae, and Yersinia pseudotuberculosis. In particular, parasitic zoonotic agents common in wildlife are Alaria alata, Baylisascaris procyonis, Echinococcus multilocularis, Sacoptes scabei, and Trichinella spp. CONCLUSION The presence of zoonotic infectious agents of risk groups 2 and 3 has to be regularly expected in numerous endemic wildlife species, especially canines, small bears, rodents, insectivores, and bats. Animal caretakers, hunters, veterinarians, and human health professionals should be aware of this risk and take protective measures appropriate to the situation.
Collapse
Affiliation(s)
- Reiner Ulrich
- Institut für Veterinär-Pathologie, Veterinärmedizinische Fakultät, Universität Leipzig, An den Tierkliniken 33, 04103, Leipzig, Deutschland.
| |
Collapse
|
6
|
Schantz AV, Dörge DD, Peter N, Klimpel S. The hidden threat: Exploring the parasite burden and feeding habits of invasive raccoon dogs ( Nyctereutes procyonoides) in central Europe. Int J Parasitol Parasites Wildl 2023; 22:155-166. [PMID: 37869059 PMCID: PMC10585636 DOI: 10.1016/j.ijppaw.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Originally from Asia, the raccoon dog Nyctereutes procyonoides is an invasive alien species in Europe, listed since 2019 on the List of invasive alien species of Union concern. The raccoon dog is considered to have negative impact on native biodiversity, as well as a crucial role in hosting and transmitting diverse parasites and pathogens of human and veterinary importance. In the present study, stomach content analyses and parasitological examinations were performed on 73 raccoon dogs from Germany. In addition, fecal samples were analyzed. The results of the study confirm the assumption that the examined raccoon dogs were infested with a various ecto- and endoparasite fauna. A total of 9 ecto- and 11 endoparasites were detected, with 6 of the endoparasites having human pathogenic potential. Trichodectes canis (P = 53.42%), Toxocara canis (P = 50.68%) and Uncinaria stenocephala (P = 68.49%) were the most abundant parasite species. The stomach contents consisted of approximately one-third vegetable and two-thirds animal components, composed of various species of amphibians, fish, insects, mammals and birds. Among them were specially protected or endangered species such as the grass frog Rana temporaria. The study shows that the raccoon dog exerts predation pressure on native species due to its omnivorous diet and, as a carrier of various parasites, poses a potential risk of infection to wild, domestic and farm animals and humans.
Collapse
Affiliation(s)
- Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt/Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325, Frankfurt/Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| |
Collapse
|
7
|
Bezerra-Santos MA, Dantas-Torres F, Mendoza-Roldan JA, Thompson RCA, Modry D, Otranto D. Invasive mammalian wildlife and the risk of zoonotic parasites. Trends Parasitol 2023; 39:786-798. [PMID: 37429777 DOI: 10.1016/j.pt.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Invasive wild mammals are present in all continents, with Europe, North America, and the Asian-Pacific region having the largest number of established species. In particular, Europe has been the continent with the highest number of zoonotic parasites associated with invasive wild mammals. These invasive species may represent a major threat for the conservation of native ecosystems and may enter in the transmission cycle of native parasites, or act as spreaders of exotic parasites. Here, we review the role of invasive wild mammals as spreaders of zoonotic parasites, presenting important examples from Europe, America, and the Asia-Pacific region. Finally, we emphasize the need for more research on these mammals and their parasites, especially in areas where their monitoring is scantily performed.
Collapse
Affiliation(s)
| | | | | | - R C Andrew Thompson
- Division of Veterinary Biology, School of Veterinary Studies, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - David Modry
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
8
|
Reinhardt NP, Wassermann M, Härle J, Romig T, Kurzrock L, Arnold J, Großmann E, Mackenstedt U, Straubinger RK. Helminths in Invasive Raccoons ( Procyon lotor) from Southwest Germany. Pathogens 2023; 12:919. [PMID: 37513766 PMCID: PMC10384161 DOI: 10.3390/pathogens12070919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
As hosts of numerous zoonotic pathogens, the role of raccoons needs to be considered in the One Health context. Raccoons progressively expand their range as invasive alien species in Europe. This study aimed to investigate the intestinal helminth fauna of raccoons in Baden-Wuerttemberg, Germany, as no such screening had ever been conducted there. In total, we obtained 102 animals from hunters in 2019 and 2020. Intestinal helminths were retrieved using the SSCT (segmented sedimentation and counting technique) and identified morphologically and by PCR-based Sanger sequencing. Fecal samples were assessed using the ELISA PetChekTM IP assay (IDEXX, Germany) and flotation technique. The artificial digestion method was employed for analyzing muscle tissue. We detected species of four nematode genera (Baylisascaris procyonis, Toxocara canis, Capillaria spp., and Trichuris spp.), three cestode genera (Atriotaenia cf. incisa/procyonis, Taenia martis, and Mesocestoides spp.), and three trematode genera (Isthmiophora hortensis/melis, Plagiorchis muris, and Brachylaima spp.). Echinococcus spp. and Trichinella spp. were not found. The invasive behavior and synanthropic habits of raccoons may increase the infection risk with these helminths in wildlife, domestic and zoo animals, and humans by serving as a connecting link. Therefore, it is crucial to initiate additional studies assessing these risks.
Collapse
Affiliation(s)
- Nico P Reinhardt
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Marion Wassermann
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jessica Härle
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Thomas Romig
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Lina Kurzrock
- IDEXX Laboratories, Vet Med Labor GmbH, 70806 Kornwestheim, Germany
| | - Janosch Arnold
- Wildlife Research Unit, Agricultural Centre Baden-Wuerttemberg (LAZBW), 88326 Aulendorf, Germany
| | - Ernst Großmann
- Aulendorf State Veterinary Diagnostic Centre (STUA), 88326 Aulendorf, Germany
| | - Ute Mackenstedt
- Parasitology Unit, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Reinhard K Straubinger
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
9
|
Lombardo A, Diano M, Brocherel G, Palmerini L, Giovannini S, Mezher Z, Iurescia M, Cerci T, Caprioli A, Eleni C, Raso C, Mariacher A, Del Lesto I, Cappai N, Mattioli L, De Liberato C, Fichi G. Detection of Endoparasites in Non-Native Raccoons from Central Italy. Vet Sci 2023; 10:vetsci10020171. [PMID: 36851475 PMCID: PMC9961332 DOI: 10.3390/vetsci10020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The raccoon (Procyon lotor) is a carnivore native to North and Central America, gradually introduced into Asia and Europe, including Italy. It is an important carrier of multiple endoparasites, both Protozoa and Helminths, some of them being zoonotic. The aim of this study was to investigate the endoparasites of the non-native raccoon population of Central Italy. Sixty-two raccoons were collected by local competent authorities (sixty trapped and euthanized, two found dead) and subjected to necroscopic examination. Carcasses underwent a broad parasitological investigation, including coprological techniques (macroscopic examination of the gastrointestinal tract, lungs, trachea, and heart, Flotac®, Baermann test, and immunofluorescence for Giardia duodenalis and Cryptosporidium spp.), research on respiratory/urinary capillariosis and artificial digestion for Trichinella spp. larvae, and a histopathological examination of the ileum. Ascarid parasites were further identified at the species level using a next-generation sequencing-based amplicon sequencing approach. The results showed the presence of different Protozoa and Nematodes: Baylisascaris procyonis (26/62; 41.9%), Pearsonema sp. (6/62; 9.6%), Capillariidae (6/62; 9.6%), Eimeria sp. (2/62; 3.2%), Cryptosporidium sp. (2/62; 3.2%), and Ancylostomatidae (2/62; 3.2%). B. procyonis is an emerging helminthic zoonotic agent considered a serious concern for public and animal health, given the possibility of its transmission to paratenic hosts, including humans and pets. The demonstrated role of the raccoon as a multi-parasite carrier should be an incentive to continuing the eradication/control of this alien species, and supports the need to implement related disease surveillance programs.
Collapse
Affiliation(s)
- Andrea Lombardo
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 52100 Arezzo, Italy
- Correspondence:
| | - Marco Diano
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 52100 Arezzo, Italy
| | - Giuseppina Brocherel
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 52100 Arezzo, Italy
| | - Lucia Palmerini
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 52100 Arezzo, Italy
| | - Serena Giovannini
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 52100 Arezzo, Italy
| | - Ziad Mezher
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 53100 Siena, Italy
| | - Manuela Iurescia
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 00178 Roma, Italy
| | - Tamara Cerci
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 00178 Roma, Italy
| | - Andrea Caprioli
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 00178 Roma, Italy
| | - Claudia Eleni
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 00178 Roma, Italy
| | - Caterina Raso
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 02100 Rieti, Italy
| | - Alessia Mariacher
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 58100 Grosseto, Italy
| | - Irene Del Lesto
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 58100 Grosseto, Italy
| | - Nadia Cappai
- Parco Nazionale Foreste Casentinesi, Monte Falterona e Campigna, 52015 Pratovecchio, Italy
| | - Luca Mattioli
- Regione Toscana, Presidio Territoriale del Settore Faunistico Venatorio ed Ittico, 52100 Arezzo, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 00178 Roma, Italy
| | - Gianluca Fichi
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, 58100 Grosseto, Italy
| |
Collapse
|