1
|
Wang R, Zhu W, Liang G, Xu J, Guo J, Wang L. Animal models for epileptic foci localization, seizure detection, and prediction by electrical impedance tomography. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1619. [PMID: 36093634 DOI: 10.1002/wcs.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Surgical resection of lesions and closed-loop suppression are the two main treatment options for patients with refractory epilepsy whose symptoms cannot be managed with medicines. Unfortunately, failures in foci localization and seizure prediction are constraining these treatments. Electrical impedance tomography (EIT), sensitive to impedance changes caused by blood flow or cell swelling, is a potential new way to locate epileptic foci and predict seizures. Animal validation is a necessary research process before EIT can be used in clinical practice, but it is unclear which among the many animal epilepsy models is most suited to this task. The selection of an animal model of epilepsy that is similar to human seizures and can be adapted to EIT is important for the accuracy and reliability of EIT research results. This study provides an overview of the animal models of epilepsy that have been used in research on the use of EIT to locate the foci or predict seizures; discusses the advantages and disadvantages of these models regarding inducement by chemical convulsant and electrical stimulation; and finally proposes optimal animal models of epilepsy to obtain more convincing research results for foci localization and seizure prediction by EIT. The ultimate goal of this study is to facilitate the development of new treatments for patients with refractory epilepsy. This article is categorized under: Neuroscience > Clinical Neuroscience Psychology > Brain Function and Dysfunction.
Collapse
Affiliation(s)
- Rong Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Wenjing Zhu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Guohua Liang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Jiaming Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Jie Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Lei Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
Markoula S, Chaudhary UJ, Perani S, De Ciantis A, Yadee T, Duncan JS, Diehl B, McEvoy AW, Lemieux L. The impact of mapping interictal discharges using EEG-fMRI on the epilepsy presurgical clinical decision making process: A prospective study. Seizure 2018; 61:30-37. [PMID: 30059825 DOI: 10.1016/j.seizure.2018.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/27/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE We set out to establish the clinical utility of EEG-correlated fMRI as part of the presurgical evaluation, by measuring prospectively its effects on the clinical decision. METHODS Patients with refractory extra-temporal focal epilepsy, referred for presurgical evaluation were recruited in a period of 18 months. The EEG-fMRI based localization was presented during a multi-disciplinary meeting after the team had defined the presumed RESULTS: Sixteen patients (six women), with a median age of 28 years, were recruited. Interpretable EEG-fMRI results were available in 13: interictal epileptic discharges (IEDs) were recorded in eleven patients and seizures were recorded in two patients. In three patients, no epileptic activity was captured during EEG-fMRI acquisition and in two of those an IED topographic map correlation was performed (between EEG recorded inside the scanner and long-term video EEG monitoring). EEG-fMRI results presentation had no impact on the initial clinical decision in three patients (23%) of the thirteen and resulted in a modification of the initial surgical plan in ten patients (77%) of the thirteen finally presented in MDT; in eight patients the impact was on the planned placement of invasive electrodes and in two patients the EEG-fMRI led to additional non-invasive tests before proceeding further with surgery. CONCLUSION The study is a prospective observational cohort study specifically designed to assess the impact of EEG-fMRI on the clinical decision making process, suggesting a significant influence of EEG-fMRI on epilepsy surgery planning.
Collapse
Affiliation(s)
- Sofia Markoula
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK; Neurology Department, University Hospital of Ioannina, Ioannina, Greece.
| | - Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK; Department of Clinical Neuroscience, Western General Hospital, Edinburgh, UK
| | - Suejen Perani
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Alessio De Ciantis
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK
| | - Tinonkorn Yadee
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire, UK
| |
Collapse
|
3
|
Ruggieri A, Vaudano AE, Benuzzi F, Serafini M, Gessaroli G, Farinelli V, Nichelli PF, Meletti S. Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously. J Neurosci Methods 2014; 239:223-37. [PMID: 25455344 DOI: 10.1016/j.jneumeth.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). NEW METHODS Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. RESULTS Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). COMPARISON WITH EXISTING METHOD Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. CONCLUSIONS Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions.
Collapse
Affiliation(s)
- Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy
| | | | - Giuliana Gessaroli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy
| | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSAE Hospital, ASL Modena, Italy.
| |
Collapse
|
4
|
Tousseyn S, Dupont P, Goffin K, Sunaert S, Van Paesschen W. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds. Front Neurol 2014; 5:131. [PMID: 25101049 PMCID: PMC4101337 DOI: 10.3389/fneur.2014.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ.
Collapse
Affiliation(s)
- Simon Tousseyn
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Patrick Dupont
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium ; Laboratory for Cognitive Neurology, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Karolien Goffin
- Department of Nuclear Medicine, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Stefan Sunaert
- Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium ; Radiology Department, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium
| |
Collapse
|
5
|
Vaudano AE, Avanzini P, Tassi L, Ruggieri A, Cantalupo G, Benuzzi F, Nichelli P, Lemieux L, Meletti S. Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG. Front Neurol 2013; 4:185. [PMID: 24294210 PMCID: PMC3827676 DOI: 10.3389/fneur.2013.00185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Department of Biomedical Sciences, Metabolism, and Neuroscience, NOCSE Hospital, University of Modena and Reggio Emilia , Modena , Italy ; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
An D, Fahoum F, Hall J, Olivier A, Gotman J, Dubeau F. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia 2013; 54:2184-94. [PMID: 24304438 DOI: 10.1111/epi.12434] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE Simultaneous electroencephalography/functional magnetic resonance imaging (EEG/fMRI) recording can noninvasively map in the whole brain the hemodynamic response following an interictal epileptic discharge. EEG/fMRI is gaining interest as a presurgical evaluation tool. This study aims to determine how hemodynamic responses related to epileptic activity can help predict surgical outcome in patients considered for epilepsy surgery. METHODS Thirty-five consecutive patients with focal epilepsy who had significant hemodynamic responses and eventually surgical resection, were studied. The statistical map of hemodynamic responses were generated and co-registered to postoperative anatomic imaging. Patients were classified into four groups defined by the relative relationship between the location of the maximum hemodynamic response and the resection: group 1, fully concordant; group 2, partially concordant; group 3, partially discordant; and group 4, fully discordant. These findings were correlated with surgical outcome with at least 12-month follow-up. KEY FINDINGS Ten patients in group 1 had the maximum t value (t-max) inside the resection; nine in group 2 had the t-max outside but close to the resection and the cluster with t-max overlapped the resection; five in group 3 had the t-max remote from resection, but with another less significant cluster in the resection; and 11 in group 4 had no response in the resection. The degree of concordance correlated largely with surgical outcome: a good surgical outcome (Engel's class I) was found in 7 of 10 patients of group 1, 4 of 9 of group 2, 3 of 5 of group 3, and only 1 of 11 of group 4. These results indicate that the partially concordant and partially discordant groups are best considered as inconclusive. In contrast, in the fully concordant and fully discordant groups, the sensitivity, specificity, positive predictive value, and negative predictive value were high, 87.5%, 76.9%, 70%, and 90.9%, respectively. SIGNIFICANCE This study demonstrates that hemodynamic responses related to epileptic activity can help delineate the epileptogenic region. Full concordance between maximum response and surgical resection is indicative of seizure freedom, whereas a resection leaving the maximum response intact is likely to lead to a poor outcome. EEG/fMRI is noninvasive but is limited to patients in whom interictal epileptic discharges can be recorded during the 60-90 min scan.
Collapse
Affiliation(s)
- Dongmei An
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
7
|
Zhang J, Liu W, Chen H, Xia H, Zhou Z, Mei S, Liu Q, Li Y. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy. NEUROIMAGE-CLINICAL 2013; 4:35-44. [PMID: 24282678 PMCID: PMC3840005 DOI: 10.1016/j.nicl.2013.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/21/2013] [Accepted: 10/25/2013] [Indexed: 01/12/2023]
Abstract
Intracranial EEG (icEEG) monitoring is critical in epilepsy surgical planning, but it has limitations. The advances of neuroimaging have made it possible to reveal epileptic abnormalities that could not be identified previously and improve the localization of the seizure focus and the vital cortex. A frequently asked question in the field is whether non-invasive neuroimaging could replace invasive icEEG or reduce the need for icEEG in presurgical evaluation. This review considers promising neuroimaging techniques in epilepsy presurgical assessment in order to address this question. In addition, due to large variations in the accuracies of neuroimaging across epilepsy centers, multicenter neuroimaging studies are reviewed, and there is much need for randomized controlled trials (RCTs) to better reveal the utility of presurgical neuroimaging. The results of multiple studies indicate that non-invasive neuroimaging could not replace invasive icEEG in surgical planning especially in non-lesional or extratemporal lobe epilepsies, but it could reduce the need for icEEG in certain cases. With technical advances, multimodal neuroimaging may play a greater role in presurgical evaluation to reduce the costs and risks of epilepsy surgery, and provide surgical options for more patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang J, Liu Q, Mei S, Zhang X, Wang X, Liu W, Chen H, Xia H, Zhou Z, Li Y. Presurgical EEG-fMRI in a complex clinical case with seizure recurrence after epilepsy surgery. Neuropsychiatr Dis Treat 2013; 9:1003-10. [PMID: 23926432 PMCID: PMC3732198 DOI: 10.2147/ndt.s47099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epilepsy surgery has improved over the last decade, but non-seizure-free outcome remains at 10%-40% in temporal lobe epilepsy (TLE) and 40%-60% in extratemporal lobe epilepsy (ETLE). This paper reports a complex multifocal case. With a normal magnetic resonance imaging (MRI) result and nonlocalizing electroencephalography (EEG) findings (bilateral TLE and ETLE, with more interictal epileptiform discharges [IEDs] in the right frontal and temporal regions), a presurgical EEG-functional MRI (fMRI) was performed before the intraoperative intracranial EEG (icEEG) monitoring (icEEG with right hemispheric coverage). Our previous EEG-fMRI analysis results (IEDs in the left hemisphere alone) were contradictory to the EEG and icEEG findings (IEDs in the right frontal and temporal regions). Thus, the EEG-fMRI data were reanalyzed with newly identified IED onsets and different fMRI model options. The reanalyzed EEG-fMRI findings were largely concordant with those of EEG and icEEG, and the failure of our previous EEG-fMRI analysis may lie in the inaccurate identification of IEDs and wrong usage of model options. The right frontal and temporal regions were resected in surgery, and dual pathology (hippocampus sclerosis and focal cortical dysplasia in the extrahippocampal region) was found. The patient became seizure-free for 3 months, but his seizures restarted after antiepileptic drugs (AEDs) were stopped. The seizures were not well controlled after resuming AEDs. Postsurgical EEGs indicated that ictal spikes in the right frontal and temporal regions reduced, while those in the left hemisphere became prominent. This case suggested that (1) EEG-fMRI is valuable in presurgical evaluation, but requires caution; and (2) the intact seizure focus in the remaining brain may cause the non-seizure-free outcome.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|