Ferreira CB, Schoorlemmer GH, Rocha AA, Cravo SL. Increased sympathetic responses induced by chronic obstructive sleep apnea are caused by sleep fragmentation.
J Appl Physiol (1985) 2020;
129:163-172. [PMID:
32552428 DOI:
10.1152/japplphysiol.00811.2019]
[Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is often associated with sympathetic overactivity and hypertension. These associations are mainly attributed to hypoxia acting on arterial chemoreceptors. However, the contribution of arousal from sleep is unclear. We measured the effect of OSA and sleep fragmentation on cardiovascular and sympathetic function and gene expression in the brain in rats. Male Wistar rats were fitted with a tracheal balloon and EEG and electromyogram electrodes and assigned to control (n = 6), OSA (n = 9), or arousal (n = 8) treatments. The OSA group was subjected to obstructive apnea, each time the rat entered sleep, for 8 h/day for 15 days. The arousal group was similarly exposed to vibration, which was produced with a miniature vibration motor mounted on the rat's head. Vibration intensity slowly increased until the rat awoke. One day after the last apnea or arousal, rats were anesthetized and arterial blood pressure and splanchnic sympathetic nerve activity (SSNA) were recorded. Baseline mean and diastolic pressure were increased after OSA. Resting SSNA was similar in the three groups, but both OSA and sleep fragmentation increased sympathetic activation in response to airway obstruction and chemoreflex activation by cyanide. OSA increased superoxide dismutases 1 and 2 in the brainstem, whereas sleep fragmentation did not. Our results suggest that sympathetic overactivity to chemoreceptor stimulation was a consequence of arousal from sleep. Our study suggests that sleep disruption may have an important role in the development of apnea-related sympathetic activation.NEW & NOTEWORTHY Obstructive sleep apnea causes a hyperactive chemoreflex, with increased sympathetic activation. However, it is not clear whether this pathophysiologic mechanism is due to repeated hypoxia or to sleep disruption. The present study suggests that sleep fragmentation contributes importantly to increased sympathetic activation after chemoreceptor stimulation. This suggests that sleep fragmentation has an important role in the sympathetic activation seen in sleep apnea patients.
Collapse