1
|
Mu X, Cui C, Liao J, Wu Z, Hu L. Regional changes in brain metabolism during the progression of mild cognitive impairment: a longitudinal study based on radiomics. EJNMMI REPORTS 2024; 8:19. [PMID: 38945980 PMCID: PMC11214937 DOI: 10.1186/s41824-024-00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND This study aimed to establish radiomics models based on positron emission tomography (PET) images to longitudinally predict transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHODS In our study, 278 MCI patients from the ADNI database were analyzed, where 60 transitioned to AD (pMCI) and 218 remained stable (sMCI) over 48 months. Patients were divided into a training set (n = 222) and a validation set (n = 56). We first employed voxel-based analysis of 18F-FDG PET images to identify brain regions that present significant SUV difference between pMCI and sMCI groups. Radiomic features were extracted from these regions, key features were selected, and predictive models were developed for individual and combined brain regions. The models' effectiveness was evaluated using metrics like AUC to determine the most accurate predictive model for MCI progression. RESULTS Voxel-based analysis revealed four brain regions implicated in the progression from MCI to AD. These include ROI1 within the Temporal lobe, ROI2 and ROI3 in the Thalamus, and ROI4 in the Limbic system. Among the predictive models developed for these individual regions, the model utilizing ROI4 demonstrated superior predictive accuracy. In the training set, the AUC for the ROI4 model was 0.803 (95% CI 0.736, 0.865), and in the validation set, it achieved an AUC of 0.733 (95% CI 0.559, 0.893). Conversely, the model based on ROI3 showed the lowest performance, with an AUC of 0.75 (95% CI 0.685, 0.809). Notably, the comprehensive model encompassing all identified regions (ROI total) outperformed the single-region models, achieving an AUC of 0.884 (95% CI 0.845, 0.921) in the training set and 0.816 (95% CI 0.705, 0.909) in the validation set, indicating significantly enhanced predictive capability for MCI progression to AD. CONCLUSION Our findings underscore the Limbic system as the brain region most closely associated with the progression from MCI to AD. Importantly, our study demonstrates that a PET brain radiomics model encompassing multiple brain regions (ROI total) significantly outperforms models based on single brain regions. This comprehensive approach more accurately identifies MCI patients at high risk of progressing to AD, offering valuable insights for non-invasive diagnostics and facilitating early and timely interventions in clinical settings.
Collapse
Affiliation(s)
- Xuxu Mu
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Caozhe Cui
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jue Liao
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhifang Wu
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lingzhi Hu
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
2
|
Considine C, Besio W. Conductive Hydrogel Tapes for Tripolar EEG: A Promising Solution to Paste-Related Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:4222. [PMID: 39001001 PMCID: PMC11244131 DOI: 10.3390/s24134222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Electroencephalography (EEG) remains pivotal in neuroscience for its non-invasive exploration of brain activity, yet traditional electrodes are plagued with artifacts and the application of conductive paste poses practical challenges. Tripolar concentric ring electrode (TCRE) sensors used for EEG (tEEG) attenuate artifacts automatically, improving the signal quality. Hydrogel tapes offer a promising alternative to conductive paste, providing mess-free application and reliable electrode-skin contact in locations without hair. Since the electrodes of the TCRE sensors are only 1.0 mm apart, the impedance of the skin-to-electrode impedance-matching medium is critical. This study evaluates four hydrogel tapes' efficacies in EEG electrode application, comparing impedance and alpha wave characteristics. Healthy adult participants underwent tEEG recordings using different tapes. The results highlight varying impedances and successful alpha wave detection despite increased tape-induced impedance. MATLAB's EEGLab facilitated signal processing. This study underscores hydrogel tapes' potential as a convenient and effective alternative to traditional paste, enriching tEEG research methodologies. Two of the conductive hydrogel tapes had significantly higher alpha wave power than the other tapes, but were never significantly lower.
Collapse
Affiliation(s)
| | - Walter Besio
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
3
|
Kosel F, Hartley MR, Franklin TB. Aberrant Cortical Activity in 5xFAD Mice in Response to Social and Non-Social Olfactory Stimuli. J Alzheimers Dis 2024; 97:659-677. [PMID: 38143360 DOI: 10.3233/jad-230858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Neuroimaging studies investigating the behavioral and psychological symptoms of dementia (BPSD)- such as apathy, anxiety, and depression- have linked some of these symptoms with altered neural activity. However, inconsistencies in operational definitions and rating scales, limited scope of assessments, and poor temporal resolution of imaging techniques have hampered human studies. Many transgenic (Tg) mouse models of Alzheimer's disease (AD) exhibit BPSD-like behaviors concomitant with AD-related neuropathology, allowing examination of how neural activity may relate to BPSD-like behaviors with high temporal and spatial resolution. OBJECTIVE To examine task-dependent neural activity in the medial prefrontal cortex (mPFC) of AD-model mice in response to social and non-social olfactory stimuli. METHODS We previously demonstrated age-related decreases in social investigation in Tg 5xFAD females, and this reduced social investigation is evident in Tg 5xFAD females and males by 6 months of age. In the present study, we examine local field potential (LFP) in the mPFC of awake, behaving 5xFAD females and males at 6 months of age during exposure to social and non-social odor stimuli in a novel olfactometer. RESULTS Our results indicate that Tg 5xFAD mice exhibit aberrant baseline and task-dependent LFP activity in the mPFC- including higher relative delta (1-4 Hz) band power and lower relative power in higher bands, and overall stronger phase-amplitude coupling- compared to wild-type controls. CONCLUSIONS These results are consistent with previous human and animal studies examining emotional processing, anxiety, fear behaviors, and stress responses, and suggest that Tg 5xFAD mice may exhibit altered arousal or anxiety.
Collapse
Affiliation(s)
- Filip Kosel
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Mackenzie Rae Hartley
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Tamara Brook Franklin
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Hu J, Zheng L, Guan Z, Zhong K, Huang F, Huang Q, Yang J, Li W, Li S. Sensory gamma entrainment: Impact on amyloid protein and therapeutic mechanism. Brain Res Bull 2023; 202:110750. [PMID: 37625524 DOI: 10.1016/j.brainresbull.2023.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The deposition of amyloid β peptide (Aβ) is one of the main pathological features of AD. The much-talked sensory gamma entrainment may be a new treatment for Aβ load. Here we reviewed the generation and clearance pathways of Aβ, aberrant gamma oscillation in AD, and the therapeutic effect of sensory gamma entrainment on AD. In addition, we discuss these results based on stimulus parameters and possible potential mechanisms. This provides the support for sensory gamma entrainment targeting Aβ to improve AD.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Leyan Zheng
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Ziyu Guan
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Kexin Zhong
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Fankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Weiyun Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
5
|
Chen X, Li Y, Li R, Yuan X, Liu M, Zhang W, Li Y. Multiple cross-frequency coupling analysis of resting-state EEG in patients with mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2023; 15:1142085. [PMID: 37600515 PMCID: PMC10436577 DOI: 10.3389/fnagi.2023.1142085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Electroencephalographic (EEG) abnormalities are seen in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) with characteristic features of cognitive impairment. The most common findings of EEG features in AD and MCI patients are increased relative power of slow oscillations (delta and theta rhythms) and decreased relative power of fast oscillations (alpha, beta and gamma rhythms). However, impairments in cognitive processes in AD and MCI are not sufficiently reflected by brain oscillatory activity in a particular frequency band. MCI patients are at high risk of progressing to AD. Cross-frequency coupling (CFC), which refers to coupling between different frequency bands, is a crucial tool for comprehending changes in brain oscillations and cognitive performance. CFC features exhibit some specificity in patients with AD and MCI, but a comparison between CFC features in individuals with these disorders is still lacking. The aim of this study was to explore changes in CFC properties in MCI and AD and to explore the relationship between CFC properties and multiple types of cognitive functional performance. Methods We recorded resting-state EEG (rsEEG) signals in 46 MCI patients, 43 AD patients, and 43 cognitively healthy controls (HCs) and analyzed the changes in CFC as well as the relationship between CFC and scores on clinical tests of cognitive function. Results and discussion Multiple couplings between low-frequency oscillations and high-frequency oscillations were found to be significantly enhanced in AD patients compared to those of HCs and MCI, while delta-gamma as well as theta-gamma couplings in the right temporal and parietal lobes were significantly enhanced in MCI patients compared to HCs. Moreover, theta-gamma coupling in the right temporal lobe tended to be stronger in MCI patients than in HCs, and it was stronger in AD than in MCI. Multiple CFC properties were found to correlate significantly with various cognitive domains, especially the memory function domain. Overall, these findings suggest that AD and MCI patients must use more neural resources to maintain a resting brain state and that alterations in theta-gamma coupling in the temporal lobe become progressively obvious during disease progression and are likely to be a valuable indicator of MCI and AD pathology.
Collapse
Affiliation(s)
- Xi Chen
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Yingjie Li
- College of International Education, Shanghai University, Shanghai, China
- School of Life Science, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
6
|
Nair RR, Sasidharan D, G V. Non-invasive Analysis of Fiber Type Composition in Lower Limb Skeletal Muscles Using Reduced Interference Rihaczek Distribution. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38373116 DOI: 10.1109/embc40787.2023.10340311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Fiber composition is an important factor influencing force generation and endurance of different skeletal muscles. The analysis of the heterogeneous composition of muscles has gained importance in the field of sports biomechanics and biomedicine. In this work, an attempt is made to analyze the fiber composition of Rectus femoris (type II dominant) and Soleus (type I dominant) muscles using surface electromyography. Isometric signals are acquired from the muscles of 15 participants using a well-defined protocol and are further processed using reduced interference Rihaczek distribution. Instantaneous median frequency (IMDF) is extracted from the non-fatigue (NF) and fatigue (F) segments of the signals and is analyzed. From the distributions, it is found that the spectral power increases in the lower frequencies of the signal recorded from the rectus femoris and in the higher frequencies of signals recorded from the soleus during fatigue. The soleus is showing higher IMDF values than the rectus femoris in both segments. A reduction of 14% and an increase of 10% is observed in the IMDF during fatigue for rectus femoris and soleus, respectively. Thus, the extracted feature is found to be sensitive and statistically significant (p<0.05) to differentiate fiber types as well as the NF and F states of the two muscles.Clinical Relevance- This study may be extended to non-invasively analyze the fiber type shifts in muscles due to athletic training and pathological conditions.
Collapse
|
7
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|