1
|
Ding GX, Chen ZJ, Homann K. A scattering-foil free electron beam to increase dose rate for total skin electron therapy (TSET). Med Phys 2024; 51:5563-5571. [PMID: 38828903 DOI: 10.1002/mp.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Electron beams are used at extended distances ranging between 300 to 700 cm to uniformly cover the entirety of the patient's skin for total skin electron therapy (TSET). Even with electron beams utilizing the high dose rate total skin electron (HDTSe) mode from the Varian 23iX or TrueBeam accelerators, the dose rate is only 2500 cGy/min at source-to-surface distance (SSD) = 100 cm. At extended distances, the decrease in dose rate leads to long beam delivery times that can limit or even prevent the use of the treatment for patients who, in their weakened condition, may be unable to stand on their own for extended periods of time. Previously, to increase dose rate, a customized 6 MeV electron beam was created by removing the x-ray target, flattening filter, beam monitor chamber, and so forth. from the beam path (Chen, et at IJROBP 59, 2004) for TSET. Using this scattering-foil free (SFF) electron beam requires the treatment distance be extended to 700 cm to achieve dose uniformity from the single beam. This room size requirement has limited the widespread use of the 6 MeV-SFF beam. PURPOSE This study explores an application of a dual-field technique with a 6 MeV-SFF beam to provide broad and uniform electron fields to reduce the treatment distances in order to overcome treatment room size limitations. METHODS The EGSnrc system was used to generate incident beams. Gantry angles between 6 MeV-SFF dual-fields were optimized to achieve the similar patient skin dose distribution resulting from a standard 6 MeV-HDTSe dual-field configuration. The patient skin dose comparisons were performed based on the patient treatment setup geometries using dose-volume-histograms. RESULTS Similar dose coverage can be achieved between 6 MeV-SFF and 6 MeV-HDTSe beams by reducing gantry angles between dual-field geometries by 8° and 7° at treatment distances of 400 and 500 cm, respectively. To achieve 95% mean dose to the first 5 mm of skin depth in the torso area, the mean dose to depths of 5-10 mm and 10-15 mm below the skin surface was 74% (74%) and 49% (50%) of the prescribed dose when using 6 MeV-SFF (6 MeV-HDTSe) beam, respectively. CONCLUSIONS The 6 MeV-SFF electron beam is feasible to provide similar TSET skin dose coverage at SSD ≥ 400 cm using a dual-field technique. The dose rate of the 6 MeV-SFF beam is about 4 times that of current available 6 MeV-HDTSe beams at treatment distances of 400-500 cm, which significantly shortens the treatment beam-on time and makes TSET available to patients in weakened conditions.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kenneth Homann
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Trivedi G, Oinam AS, Yadav BS, Singh PP, Singh R, Robert N. Challenges in commissioning the "TSET" technique: A new approach towards monitor unit calculation and beam profile measurements. J Cancer Res Ther 2024; 20:389-395. [PMID: 38554351 DOI: 10.4103/jcrt.jcrt_1579_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 04/01/2024]
Abstract
INTRODUCTION Total skin electron beam therapy, commonly known as TSET, is a good choice of treatment for patients suffering from mycosis fungoides. The aim of this study was to introduce a new approach to the beam profile measurement using diodes and to calculate the monitor units required for the TSET treatment by the use of a simple setup of output measurement. Dosimetric measurements required for the treatment were taken to establish the Stanford technique in the department, and the measured data was compared with the published data. MATERIALS AND METHODS High-energy Linear Accelerator Clinac-DHX, Varian medical system, Palo Alto, CA, was commissioned for TSET. The output of the machine was measured by the use of a Parallel-Plate Chamber (PPC40) as per the TRS 398 recommendation. Diode dosimeters (EDD2 and EDD5) were used for beam profile measurements due to easy setup and to reduce the measurement time. RESULTS Homogeneous dose distribution within a field size of 80 cm x160 cm was observed with the variation of -5.0% on the horizontal axis and -5.4% on the vertical axis. The calculated monitor unit to deliver 200 cGy per fraction per field at the source to surface (SSD) of 416 cm was 489 MU. CONCLUSION The technique described for the output measurements is simple and accurate. Results of the absorbed dose and MU measured were within good agreement compared to the published literature.
Collapse
Affiliation(s)
| | - Arun S Oinam
- Department of Radiotherapy, PGIMER, Chandigarh, India
| | | | - Pushpendra P Singh
- Department of Physics, Indian Institute of Technology, Ropar, Punjab, India
| | - Ranjit Singh
- Department of Radiotherapy, PGIMER, Chandigarh, India
| | | |
Collapse
|
3
|
Total Skin Treatment with Helical Arc Radiotherapy. Int J Mol Sci 2023; 24:ijms24054492. [PMID: 36901922 PMCID: PMC10002962 DOI: 10.3390/ijms24054492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
For widespread cutaneous lymphoma, such as mycosis fungoides or leukemia cutis, in patients with acute myeloid leukemia (AML) and for chronic myeloproliferative diseases, total skin irradiation is an efficient treatment modality for disease control. Total skin irradiation aims to homogeneously irradiate the skin of the entire body. However, the natural geometric shape and skin folding of the human body pose challenges to treatment. This article introduces treatment techniques and the evolution of total skin irradiation. Articles on total skin irradiation by helical tomotherapy and the advantages of total skin irradiation by helical tomotherapy are reviewed. Differences among each treatment technique and treatment advantages are compared. Adverse treatment effects and clinical care during irradiation and possible dose regimens are mentioned for future prospects of total skin irradiation.
Collapse
|
4
|
Ding GX, Chen ZJ, Zhong W, Zhu TC. Skin dose distributions between Stanford and rotational techniques in total skin electron therapy (TSET). Med Phys 2022; 49:6646-6653. [PMID: 35972019 DOI: 10.1002/mp.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 07/30/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Total skin electron therapy (TSET) has proven to be one of the most effective treatments for advanced-stage cutaneous T-cell lymphoma. Two most used techniques are the Stanford six-field and rotational techniques. This study compares patient skin dose distributions as a function of depth between these two techniques. METHODS The EGSnrc system was used to simulate electron beams and calculate patient dose distributions. The calculations assumed the same patient standing on a platform and the patient's different postures were ignored for the Stanford technique in the comparison of dose distributions. The skin doses were analyzed as a function of skin depth-dose coverage and evaluated using dose-volume-histograms (DVH). The comparisons were performed in three realistic clinical settings in which dual-field were used for patients treated at extended distances of 316 cm and 500 cm, and a single field was used at 700 cm. In all cases the realistic patient treatment beam delivery geometry was simulated. RESULTS Although small dose differences were observed in some local areas, no clinically significant differences were found in the patient 3D dose distributions between the Stanford and rotational techniques. Virtually the same DVH curves between two the techniques were observed for mean dose to skin depth of 0-5 mm, 5-10 mm and 10-15 mm from the skin surface, respectively. It is found that the skin depth dose coverage is 2 mm shallower for patient treatment at 500 cm compared to at 316 cm due to the additional air attenuation. However, very similar dose coverage and uniformity can be achieved at these two different extended treatment distances by adjusting the thickness of acrylic scatter plate. Adequate thickness of a scattering plate improves the skin dose uniformity. CONCLUSION Both the Stanford and rotational techniques deliver very similar skin dose coverage in DVH plots and only small differences are seen in local areas. It is worth to emphasize that the dose-volume histogram (DVH) is a graphical representation of the distribution of dose within a structure and it does not contain spatial information. Therefore, comparison of entire skin dose using DVH may mask some variations at different locations of the surface area. In addition, the comparison did not consider different patient postures of the Stanford technique. Including the different patient postures in the calculation may affect the result of doses to the limbs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Zhe J Chen
- Dept. of Therapeutic Radiology, Yale University School of Medicine
| | - Weili Zhong
- Dept. of Radiation Oncology, Perelman Center of Advanced Medicine, Univ of Pennsylvania
| | - Timothy C Zhu
- Dept. of Radiation Oncology, Perelman Center of Advanced Medicine, Univ of Pennsylvania
| |
Collapse
|
5
|
Ding GX, Dogan SK, Das IJ. Technical Note: Bremsstrahlung dose in the electron beam at extended distances in total skin electron therapy. Med Phys 2021; 49:1297-1302. [PMID: 34964133 DOI: 10.1002/mp.15433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Electron beam from a linear accelerator is commonly used in total skin electron Therapy (TSET) at extended distances. Since Das et al (Med Phys 21, p.1733, 1994) reported 5% bremsstrahlung dose for a 6 MeV electron beam at extended distance of 500 cm it has been accepted as common knowledge. However, measurements by Chen et al (Int J. Rad Onc Biol Phys 59 p.872, 2004) and Monte Carlo simulations by Ding et al (Phys. Med. Biol. 66, 075010, 2021) were unable to reproduce such high bremsstrahlung dose. As bremsstrahlung dose contributes to whole-body dose which could produce bone marrow toxicity with serious complications for the outcome of the TSET, it is important to re-evaluate the magnitude of bremsstrahlung dose accurately. METHODS The EGSnrc Monte Carlo system is used to investigate bremsstrahlung doses from 6 MeV high dose rate total skin electron (HDTSe) beams from Varian TrueBeam and Clinac Accelerators. The measurements were carried out at depth of dmax and 5 cm in solid water and Acrylic phantoms at extended distances using a parallel-plate chamber and a cylindrical ion chamber. RESULTS We were able to reproduce previously reported high bremsstrahlung dose at extended distances by using a parallel plate ionization chamber. However, both the measurements by using a cylindrical chamber and Monte Carlo simulations showed an insignificant bremsstrahlung dose (∼1%) even at SSD = 500 cm. CONCLUSION The bremsstrahlung doses of a 6 MeV electron beam are 0.5% to 1% for SSD from 100 to 700 cm, although it increases with the increasing extended distance. The common belief of up to 5% bremsstrahlung dose at large extended distances is incorrect. Previously reported high bremsstrahlung doses might be due to poor signal-to-noise ratio of using parallel plate chamber for measuring very low dose or particular set-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Fahimi Monzari S, Geraily G, Aghili M, Toolee H. Evaluation of Dose Distribution in Optimized Stanford Total Skin Electron Therapy (TSET) Technique in Rando Anthropomorphic Phantom using EBT3 Gafchromatic Films. J Biomed Phys Eng 2021; 11:425-434. [PMID: 34458190 PMCID: PMC8385220 DOI: 10.31661/jbpe.v0i0.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 12/05/2022]
Abstract
Background: The Total Skin Electron Therapy (TSET) targets the whole of skin using 6 to 10 MeV electrons in large field size and large Source to Surface Distance (SSD).
Treatment in sleeping position leads to a better distribution of dose and patient comfort. Objective: This study aims to investigate the uniformity of absorbed dose in the sleeping Stanford technique on the Rando phantom using dosimetry. Material and Methods: It is an experimental study which was performed using 6 MeV electron irradiation produced by Varian accelerator in the AP and PA positions with gantry angles of 318/3, 0 and 41/5 degrees,
and RAO, LAO, RPO and LPO with 291/4 gantry angle and 45 degrees of collimator angle in the sleeping position. Results: The results show that the dose uniformity achieved in this technique is in the range of (100 ± 25%) and, the dose accuracy was 6%. Conclusion: Total Skin Electron Therapy (TSET) technique in sleeping position is very suitable for elderly and disabled patients, and meets the required dose uniformity.
Furthermore, the use of a flattening filter is recommended for the more dose distribution uniformity.
Collapse
Affiliation(s)
| | - Ghazale Geraily
- PhD, Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aghili
- MD, Oncology Specialist, Cancer Institute of Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Heydar Toolee
- PhD, Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ding GX. Stopping-power ratios for electron beams used in total skin electron therapy. Med Phys 2021; 48:5472-5478. [PMID: 34287969 DOI: 10.1002/mp.15121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The electron beams for total skin electron therapy (TSET) are often degraded by a scatter plate in addition to extended distances. For electron dosimetry, both the AAPM TG-51 and IAEA TRS-398 recommend the use of two formulas developed by Burns et al [Med. Phys. 23, 489-501 (1996)] to estimate the water-to-air stopping-power ratios (SPRs). Both formulas are based on a fit to SPRs calculated for standard electron beams. This study aims to find: (1) if the formulas are applicable to beams used in TSET and (2) the impact of the ICRU report 90 recommendations on the SPRs for these beams. METHODS The EGSnrc Monte Carlo code system is used to generate 6 MeV high dose rate total skin electron (HDTSe) beams used in TSET. The simulated beams are used to calculate dose distributions and SPRs as a function of depth in a water phantom. The fitted SPRs using the empirical formulas are compared with MC-calculated SPRs. RESULTS The electron beam quality specifier, the depth in water at which the absorbed dose falls to 50% of its maximum value, R50 , decreases approximately 1 mm for each additional 100-cm extended distance ranging from 2.24 cm at SSD = 100 to 1.72 cm at SSD = 700 cm. For beams passing through a scatter plate, R50 is 1.76 cm (1.14) at SSD = 300 and 1.48 cm (0.85 cm) at SSD = 600 cm with an Acrylic plate thickness of 3 mm (9 mm), respectively. The discrepancy between fitted and MC-calculated SPRs at dref as a function of R50 is <0.8%, and in many cases <0.4%. The difference between fitted and MC-calculated SPRs as a function of depth and R50 is within 1% at depths <0.8R50 for beams with R50 ≥ 1.14 cm. The ICRU-90 recommendations decrease SPRs by 0.3%-0.4% compared to the use of data recommended in ICRU-37. CONCLUSION The formulas used by the major protocols are accurate enough for clinical beams used in TSET and the error caused using the formulas is <1% to estimate SPRs as a function of depth and R50 for depths <0.8R50 for beams used in TSET with R50 ≥ 1.14 cm. The impact of the ICRU-90 recommendations shows a decrease of SPRs by a fraction of a percent for beams used in TSET.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Jarvis LA, Hachadorian RL, Jermyn M, Bruza P, Alexander DA, Tendler II, Williams BB, Gladstone DJ, Schaner PE, Zaki BI, Pogue BW. Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery. Int J Radiat Oncol Biol Phys 2021; 109:1627-1637. [PMID: 33227443 PMCID: PMC10544920 DOI: 10.1016/j.ijrobp.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The value of Cherenkov imaging as an on-patient, real-time, treatment delivery verification system was examined in a 64-patient cohort during routine radiation treatments in a single-center study. METHODS AND MATERIALS Cherenkov cameras were mounted in treatment rooms and used to image patients during their standard radiation therapy regimen for various sites, predominantly for whole breast and total skin electron therapy. For most patients, multiple fractions were imaged, with some involving bolus or scintillators on the skin. Measures of repeatability were calculated with a mean distance to conformity (MDC) for breast irradiation images. RESULTS In breast treatments, Cherenkov images identified fractions when treatment delivery resulted in dose on the contralateral breast, the arm, or the chin and found nonideal bolus positioning. In sarcoma treatments, safe positioning of the contralateral leg was monitored. For all 199 imaged breast treatment fields, the interfraction MDC was within 7 mm compared with the first day of treatment (with only 7.5% of treatments exceeding 3 mm), and all but 1 fell within 7 mm relative to the treatment plan. The value of imaging dose through clear bolus or quantifying surface dose with scintillator dots was examined. Cherenkov imaging also was able to assess field match lines in cerebral-spinal and breast irradiation with nodes. Treatment imaging of other anatomic sites confirmed the value of surface dose imaging more broadly. CONCLUSIONS Daily radiation therapy can be imaged routinely via Cherenkov emissions. Both the real-time images and the posttreatment, cumulative images provide surrogate maps of surface dose delivery that can be used for incident discovery and/or continuous improvement in many delivery techniques. In this initial 64-patient cohort, we discovered 6 minor incidents using Cherenkov imaging; these otherwise would have gone undetected. In addition, imaging provides automated, quantitative metrics useful for determining the quality of radiation therapy delivery.
Collapse
Affiliation(s)
- Lesley A Jarvis
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| | | | - Michael Jermyn
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | | | - Irwin I Tendler
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Benjamin B Williams
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - David J Gladstone
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Philip E Schaner
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bassem I Zaki
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
9
|
Ding GX, Osmundson EC, Shinohara E, Newman NB, Price M, Kirschner AN. Monte Carlo study on dose distributions from total skin electron irradiation therapy (TSET). Phys Med Biol 2021; 66. [PMID: 33706289 DOI: 10.1088/1361-6560/abedd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
Total skin electron therapy (TSET) has been used to treat mycosis fungoides since the 1950s. Practitioners of TSET rely on relatively crude, phantom-based point measurements for commissioning and treatment plan dosimetry. Using Monte Carlo simulation techniques, this study presents whole-body dosimetry for a patient receiving rotational, dual-field TSET. The Monte Carlo codes, BEAMnrc/DOSXYZnrc, were used to simulate 6 MeV electron beams to calculate skin dose from TSET. Simulations were validated with experimental measurements. The rotational dual-field technique uses extended source-to-surface distance with an acrylic beam degrader between the patient and incident beams. Simulations incorporated patient positioning: standing on a platform that rotates during radiation delivery. Resultant patient doses were analyzed as a function of skin depth-dose coverage and evaluated using dose-volume-histograms (DVH). Good agreement was obtained between simulations and measurements. For a cylinder with a 30 cm diameter, the depths that dose fell to 50% of the surface dose was 0.66 cm, 1.15 cm and 1.42 cm for thicknesses of 9 mm, 3 mm and without an acrylic scatter plate, respectively. The results are insensitive to cylinder diameter. Relatively uniform skin surface dose was obtained for skin in the torso area although large dose variations (>25%) were found in other areas resulting from partial beam shielding of the extremities. To achieve 95% mean dose to the first 5 mm of skin depth, the mean dose to skin depth of 5-10 mm and depth of 10-15 mm from the skin surface was 74% (57%) and 50% (25%) of the prescribed dose when using a 3mm (9 mm) thickness scatter plate, respectively. As a result of this investigation on patient skin dose distributions we changed our patient treatments to use a 3 mm instead of a 9 mm thickness Acrylic scatter plate for clinically preferred skin depth dose coverage.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Evan C Osmundson
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Eric Shinohara
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Neil B Newman
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Michael Price
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Austin N Kirschner
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| |
Collapse
|
10
|
Yanagi Y, Tamura M, Monzen H, Matsumoto K, Takei Y, Noma K, Kida T. [Application of Real-time Variable Shape Tungsten Rubber for Nail Radiation Protection in the Total Skin Electron Beam (TSEB) Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:145-152. [PMID: 33612692 DOI: 10.6009/jjrt.2021_jsrt_77.2.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PURPOSE This study investigated whether real-time variable shape tungsten rubber (STR) could be applied for nail radiation protection in total skin electron beam (TSEB) therapy. METHODS Simulated finger phantoms were made from syringes filled with physiological saline of volumes 5, 10, 20, and 30 ml (inner diameters of 14.1, 17.0, 21.7, and 25.3 mm, respectively). Gafchromic film was applied to the phantom, and lead (thickness 1-3 mm) or STR (thickness 1-4 mm) with an area of 4´1.5 cm was used to cover the film. A 6 MeV electron beam with an 8 mm acrylic board was then used to irradiate the phantom. The source-surface distance (SSD) was 444 cm, the field size was 36´36 cm at SSD of 100 cm without an electron applicator, and the monitor unit was 2000 MU. The shielding rates were obtained from the dose profiles. RESULTS The mean values of the shielding rate values for all phantoms were 50.1, 97.6, and 98.7% for 1, 2, and 3 mm of lead, respectively, and -13.6, 53.9, 91.2, and 99.4% for 1, 2, 3, and 4 mm of STR, respectively. CONCLUSION STR with a thickness of 4 mm had the same shielding properties as lead with a thickness of 3 mm, which was an approximately 100% shielding rate. STR could therefore be used in TSEB therapy instead of lead.
Collapse
Affiliation(s)
- Yuya Yanagi
- Department of Radiology, Shiga University of Medical Science Hospital
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
| | - Kenji Matsumoto
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
- Department of Radiology, Kindai University Hospital
| | - Yoshiki Takei
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
- Department of Radiology, Kindai University Nara Hospital
| | - Kazuo Noma
- Department of Radiology, Shiga University of Medical Science Hospital
| | - Tetsuo Kida
- Department of Radiology, Shiga University of Medical Science Hospital
| |
Collapse
|
11
|
Kairn T, Wilks R, Yu L, Lancaster C, Crowe SB. In vivo monitoring of total skin electron dose using optically stimulated luminescence dosimeters. Rep Pract Oncol Radiother 2020; 25:35-40. [PMID: 31889918 PMCID: PMC6931195 DOI: 10.1016/j.rpor.2019.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
AIM This study retrospectively analysed the results of using optically stimulated radiation dosimeters (OSLDs) for in vivo dose measurements during total skin electron therapy (TSET, also known as TSEI, TSEB, TSEBT, TSI or TBE) treatments of patients with mycosis fungoides. BACKGROUND TSET treatments are generally delivered to standing patients, using treatment plans that are devised using manual dose calculations that require verification via in vivo dosimetry. Despite the increasing use of OSLDs for radiation dosimetry, there is minimal published guidance on the use of OSLDs for TSET verification. MATERIALS AND METHODS This study retrospectively reviewed in vivo dose measurements made during treatments of nine consecutive TSET patients, treated between 2013 and 2018. Landauer nanoDot OSLDs were used to measure the skin dose at reference locations on each patient, as well as at locations of clinical interest such as the head, hands, feet, axilla and groin. RESULTS 1301 OSLD measurements were aggregated and analysed, producing results that were in broad agreement with previous TLD studies, while providing additional information about the variation of dose across concave surfaces and potentially guiding future refinement of treatment setup. In many cases these in vivo measurements were used to identify deviations from the planned dose in reference locations and to identify anatomical regions where additional shielding or boost treatments were required. CONCLUSIONS OSLDs can be used to obtain measurements of TSET dose that can inform monitor unit adjustments and identify regions of under and over dosage, while potentially informing continuous quality improvement in TSET treatment delivery.
Collapse
Affiliation(s)
- Tanya Kairn
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston Qld, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane Qld, Australia
| | - Rachael Wilks
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston Qld, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane Qld, Australia
| | - Liting Yu
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston Qld, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane Qld, Australia
| | - Craig Lancaster
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston Qld, Australia
| | - Scott B Crowe
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston Qld, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane Qld, Australia
| |
Collapse
|
12
|
Fabrication of anthropomorphic phantoms for use in total body irradiations studies. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPurpose:The aim of this study was to produce a low-cost anatomical model of adult male including lower limbs to evaluate the three-dimensional dose distribution for dosimetry measurements, especially in total body irradiation (TBI) and total skin electron therapy (TSET).Materials and methods:Computed tomography (CT) scan images of the atomic energy organisation RANDO phantom and lower limb CT scan images of 20 healthy persons were averaged. Selections of different body tissues substitute materials and phantom validation were performed according to previous studies worked on construction of radiation therapy phantoms.Results:The dosimetry aspect of the selected substitute materials from all considered methods showed that they were in good agreement with real human tissue, especially bone, with a percentage error of 0·5%. The results show that the electron densities obtained from the linear attenuation coefficient (reDLAC) for the tissue equivalent material used in the phantom is a better option for validation.Conclusions:This validated phantom has numerous advantages over the origin type of RANDO phantom. Therefore, using it in TBI and TSET dosimetry is recommendable.
Collapse
|
13
|
Abstract
Primary cutaneous lymphomas are the second most common form of extra-nodal lymphomas. They have special characteristics compared with other lymphomas. They are most frequently of T-cell origin and they generally have a much more indolent course than lymphomas of similar histology in other locations. Mycosis fungoides is the most common type of cutaneous lymphoma. Primary cutaneous lymphomas remain confined to the skin for a long time. Skin-directed therapies are the main treatments; systemic treatments are not very effective for the skin lesions. Skin-directed therapies used for the early and thin lesions are topical corticosteroids, phototherapy and topical retinoids and, for the more widespread or thick lesions, topical nitrogen mustard and radiation. Radiation therapy is highly effective and is indicated in virtually all cases of localised disease. Radiation therapy may be given to the whole skin surface, so-called total skin electron beam therapy. However, if the disease spreads to other organs, systemic treatments are indicated, often combined with skin-directed therapies. Conventional cytotoxic therapy is less effective in cutaneous lymphomas. The commonly used therapies, such as interferon, enhanced anti-tumour immunity and the recent advances in immune therapies may improve our treatments for cutaneous lymphomas.
Collapse
|
14
|
Andreozzi JM, Zhang R, Gladstone DJ, Williams BB, Glaser AK, Pogue BW, Jarvis LA. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy. Med Phys 2016; 43:993-1002. [PMID: 26843259 DOI: 10.1118/1.4939880] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). METHODS Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. RESULTS As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R(2) = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R(2) = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. CONCLUSIONS Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments.
Collapse
Affiliation(s)
| | - Rongxiao Zhang
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755
| | - David J Gladstone
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Benjamin B Williams
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Adam K Glaser
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Brian W Pogue
- Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755
| | - Lesley A Jarvis
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| |
Collapse
|
15
|
Nelligan R, Baldwin Z, Ostwald T, Tran T, Bailey M. ACPSEM ROSG TBE working group recommendations for quality assurance in total body electron irradiation. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:479-92. [PMID: 26341344 DOI: 10.1007/s13246-015-0371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups in 2011 to develop recommendations for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations are intended to provide guidance for safe work practices and a suitable level of quality control without detailed work instructions. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance to these recommendations. The recommendations are endorsed by the ROSG, and have been subject to independent expert reviews. For the Australian readers, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Reform Implementation Committee Quality Working Group: Radiation Oncology Practice Standards (2011), and Radiation Oncology Practice Standards Supplementary Guide (2011). This publication presents the recommendations of the ACPSEM ROSG Total Body Electron Irradiation Working Group and has been developed in alignment with other international associations. However, these recommendations should be read in conjunction with relevant national, state or territory legislation and local requirements, which take precedence over the ACPSEM recommendations. It is hoped that the users of this and other ACPSEM recommendations will contribute to the development of future versions through the Radiation Oncology Specialty Group of the ACPSEM. This document serves as a guideline for calibration and quality assurance of equipment used for TBE in Australasia.
Collapse
Affiliation(s)
- Raelene Nelligan
- Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Zoë Baldwin
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia.,Genesis Cancer Care, Mater Hospital, Crow's Nest, New South Wales, 2065, Australia
| | - Trish Ostwald
- Calvary Mater Newcastle, Waratah, NSW, 2298, Australia
| | - Thu Tran
- Barwon Health, University Hospital, Geelong, VIC, 3220, Australia
| | - Michael Bailey
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| |
Collapse
|
16
|
Specht L, Dabaja B, Illidge T, Wilson LD, Hoppe RT. Modern radiation therapy for primary cutaneous lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys 2015; 92:32-9. [PMID: 25863751 DOI: 10.1016/j.ijrobp.2015.01.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 10/23/2022]
Abstract
Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era.
Collapse
Affiliation(s)
- Lena Specht
- Departments of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Bouthaina Dabaja
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tim Illidge
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | - Lynn D Wilson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Richard T Hoppe
- Department of Radiation Oncology, Stanford University, Stanford, California
| | | |
Collapse
|
17
|
Mazzeo E, Rubino L, Buglione M, Antognoni P, Magrini SM, Bertoni F, Parmiggiani M, Barbieri P, Bertoni F. The current management of mycosis fungoides and Sézary syndrome and the role of radiotherapy: Principles and indications. Rep Pract Oncol Radiother 2014; 19:77-91. [PMID: 24936325 PMCID: PMC4054991 DOI: 10.1016/j.rpor.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/17/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022] Open
Abstract
AIM To evaluate the current treatment of mycosis fungoides (MF) and Sézary syndrome (SS) focusing on the role of radiotherapy (RT), its principles and indications, and the perspectives of the novel irradiation technologies. BACKGROUND MF and SS are rare lymphoproliferative diseases whose incidence is increasing. For a long time RT has been used as a single modality or in integrated treatment programs for these diseases. MATERIALS AND METHODS The latest systematic reviews, primary studies and new diagnostic and treatment guidelines on MF and SS were analyzed. Clinical outcomes together with the technical aspects and the role of RT were also evaluated. RESULTS New data are available on pathogenesis, diagnostic criteria, classification and staging procedures for MF and SS and several local and systemic therapies are proposed. Localized RT can cure "minimal stage" MF while total skin electron beam irradiation (TSEI) may cure initial-stage disease and may offer important symptom relief (itch, erythroderma) in a more advanced setting. Despite its efficacy, RT is not largely used, mainly because of some technical difficulties but new RT technologies may be proposed to treat large skin surfaces. CONCLUSIONS New treatment programs offer good results, with median survival of more than 12 years in early-stage MF, but the median survival of 2.5 years or less in advanced stages is still a challenge. RT remains an option for all stages with a good cost/effectiveness ratio in a curative or palliative setting. New RT technologies can overcome some technical problems of treating large skin surfaces.
Collapse
Affiliation(s)
- Ercole Mazzeo
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Laura Rubino
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Michela Buglione
- Department of Radiation Oncology, Brescia University, Istituto del Radio “O. Alberti”, Brescia, Italy
| | - Paolo Antognoni
- Department of Radiotherapy, Azienda Ospedaliera Universitaria Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, Brescia University, Istituto del Radio “O. Alberti”, Brescia, Italy
| | - Francesco Bertoni
- Department of Radiation Oncology, Brescia University, Istituto del Radio “O. Alberti”, Brescia, Italy
| | - Manuela Parmiggiani
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Paola Barbieri
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Filippo Bertoni
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| |
Collapse
|
18
|
Lloyd S, Chen Z, Foss FM, Girardi M, Wilson LD. Acute toxicity and risk of infection during total skin electron beam therapy for mycosis fungoides. J Am Acad Dermatol 2013; 69:537-43. [DOI: 10.1016/j.jaad.2013.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
19
|
Luĉić F, Sánchez-Nieto B, Caprile P, Zelada G, Goset K. Dosimetric characterization and optimization of a customized Stanford total skin electron irradiation (TSEI) technique. J Appl Clin Med Phys 2013; 14:231-42. [PMID: 24036877 PMCID: PMC5714578 DOI: 10.1120/jacmp.v14i5.4388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/01/2013] [Accepted: 03/21/2013] [Indexed: 11/23/2022] Open
Abstract
Total skin electron irradiation (TSEI) has been used as a treatment for mycosis fungoides. Our center has implemented a modified Stanford technique with six pairs of 6 MeV adjacent electron beams, incident perpendicularly on the patient who remains lying on a translational platform, at 200 cm from the source. The purpose of this study is to perform a dosimetric characterization of this technique and to investigate its optimization in terms of energy characteristics, extension, and uniformity of the treatment field. In order to improve the homogeneity of the distribution, a custom‐made polyester filter of variable thickness and a uniform PMMA degrader plate were used. It was found that the characteristics of a 9 MeV beam with an 8 mm thick degrader were similar to those of the 6 MeV beam without filter, but with an increased surface dose. The combination of the degrader and the polyester filter improved the uniformity of the distribution along the dual field (180 cm long), increasing the dose at the borders of field by 43%. The optimum angles for the pair of beams were ± 27°. This configuration avoided displacement of the patient, and reduced the treatment time and the positioning problems related to the abutting superior and inferior fields. Dose distributions in the transversal plane were measured for the six incidences of the Stanford technique with film dosimetry in an anthropomorphic pelvic phantom. This was performed for the optimized treatment and compared with the previously implemented technique. The comparison showed an increased superficial dose and improved uniformity of the 85% isodose curve coverage for the optimized technique. PACS numbers: 87.53.Bn, 87.55.ne, 87.56.bd
Collapse
|
20
|
An attempted substitute study of total skin electron therapy technique by using helical photon tomotherapy with helical irradiation of the total skin treatment: a phantom result. BIOMED RESEARCH INTERNATIONAL 2013; 2013:108794. [PMID: 23984313 PMCID: PMC3747477 DOI: 10.1155/2013/108794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/16/2013] [Indexed: 12/25/2022]
Abstract
An anthropomorphic phantom was used to investigate a treatment technique and analyze the dose distributions for helical irradiation of the total skin (HITS) by helical tomotherapy (HT). Hypothetical bolus of thicknesses of 0, 10, and 15 mm was added around the phantom body to account for the dose homogeneity and setup uncertainty. A central core structure was assigned as a “complete block” to force the dose tangential delivery. HITS technique with prescribed dose (Dp) of 36 Gy in 36 fractions was generated. The radiochromic EBT2 films were used for the dose measurements. The target region with 95.0% of the Dp received by more than 95% of the PTV was obtained. The calculated mean doses for the organs at risk (OARs) were 4.69, 3.10, 3.20, and 2.94 Gy for the lung, heart, liver, and kidneys, respectively. The measurement doses on a phantom surface for a plan with 10 mm hypothetical bolus and bolus thicknesses of 0, 1, 2, and 3 mm are 89.5%, 111.4%, 116.9%, and 117.7% of Dp, respectively. HITS can provide an accurate and uniform treatment dose in the skin with limited doses to OARs and is safe to replace a total skin electron beam regimen.
Collapse
|
21
|
Diamantopoulos S, Platoni K, Dilvoi M, Nazos I, Geropantas K, Maravelis G, Tolia M, Beli I, Efstathopoulos E, Pantelakos P, Panayiotakis G, Kouloulias V. Clinical implementation of total skin electron beam (TSEB) therapy: A review of the relevant literature. Phys Med 2011; 27:62-8. [DOI: 10.1016/j.ejmp.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022] Open
|
22
|
Sézary syndrome: Immunopathogenesis, literature review of therapeutic options, and recommendations for therapy by the United States Cutaneous Lymphoma Consortium (USCLC). J Am Acad Dermatol 2011; 64:352-404. [DOI: 10.1016/j.jaad.2010.08.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/10/2010] [Accepted: 08/30/2010] [Indexed: 11/19/2022]
|
23
|
Wilson LD. Radiation therapy and cutaneous lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2010; 10 Suppl 2:S99-102. [PMID: 20826409 DOI: 10.3816/clml.2010.s.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Lynn D Wilson
- Therapeutic Radiology, Yale University, New Haven, CT
| |
Collapse
|
24
|
Gerbi BJ, Antolak JA, Deibel FC, Followill DS, Herman MG, Higgins PD, Huq MS, Mihailidis DN, Yorke ED, Hogstrom KR, Khan FM. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25. Med Phys 2009; 36:3239-79. [PMID: 19673223 DOI: 10.1118/1.3125820] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of radiochromic film for electrons is addressed, and radiographic film that is no longer available has been replaced by film that is available. Realistic stopping-power data are incorporated when appropriate along with enhanced tables of electron fluence data. A larger list of clinical applications of electron beams is included in the full TG-70 report available at http://www.aapm.org/pubs/reports. Descriptions of the techniques in the clinical sections are not exhaustive but do describe key elements of the procedures and how to initiate these programs in the clinic. There have been no major changes since the TG-25 report relating to flatness and symmetry, surface dose, use of thermoluminescent dosimeters or diodes, virtual source position designation, air gap corrections, oblique incidence, or corrections for inhomogeneities. Thus these topics are not addressed in the TG-70 report.
Collapse
Affiliation(s)
- Bruce J Gerbi
- University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Girardi M, Berger CL, Wilson LD, Christensen IR, Thompson KR, Glusac EJ, Edelson RL. Transimmunization for cutaneous T cell lymphoma: A phase I study. Leuk Lymphoma 2009; 47:1495-503. [PMID: 16966259 DOI: 10.1080/10428190600581419] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Extracorporeal photochemotherapy (ECP) is a widely used immunotherapy for cutaneous T cell lymphoma (CTCL). It involves four sequential steps: conversion of blood monocytes into dendritic antigen presenting cells (DC) by repetitive adherence and disadherence to plastic surface; reinfusion of the new DC; presumed in vivo loading of the new DC with apoptotic malignant leukocytes; and expansion of the anti-tumor CD8 T cell pool. To assess the safety of a methodology designed to increase ex vivo contact between the apoptotic malignant cells and new DC prior to reinfusion, a single-center, open-label Phase I clinical study of a revised procedure--referred to as "Transimmunization"--was conducted in CTCL patients. Twenty-seven subjects were treated monthly for 3 to 5 months, alone or in combination with electron beam therapy. For those receiving Transimmunization alone, there was an overall diminution in infiltrative lesions in eleven (55%) of twenty patients. In the twelve leukemic CTCL patients, there was a significant mean reduction of 50.1% in the circulating malignant cells, as determined with family-specific anti-T cell receptor Vbeta monoclonal antibodies (P <or= 0.021). Because this therapy permits the synchronous induction and tumor loading of DC, with minimal toxicity, Transimmunization may merit further investigation in CTCL and other malignancies.
Collapse
Affiliation(s)
- Michael Girardi
- Department of Dermatology, Yale University School of Medicine, CT 06520-8059, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
The skin is the most common site of extranodal non-Hodgkin lymphoma, with a yearly incidence approaching 1 per 100,000 individuals in the United States. Skin lymphomas are classified broadly into cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma (CBCL). Within these broad categories, multiple unique pathologic entities exist with a wide array of natural histories and treatment options. Radiotherapy plays an important role in the curative treatment of localized CTCL and CBCL and may be used to palliate cutaneous and visceral symptoms associated with advanced disease. This review highlights the role of radiotherapy in the multidisciplinary management of cutaneous lymphoma.
Collapse
Affiliation(s)
- Benjamin D Smith
- United States Air Force, Wilford Hall Medical Center, Lackland AFB, TX, USA
| | | |
Collapse
|
28
|
Ye SJ, Pareek PN, Spencer S, Duan J, Brezovich IA. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations. Med Phys 2005; 32:1460-8. [PMID: 16013701 DOI: 10.1118/1.1924368] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Total skin electron irradiation (TSEI) with single fields requires large electron beams having good dose uniformity, dmax at the skin surface, and low bremsstrahlung contamination. To satisfy these requirements, energy degraders and scattering foils have to be specially designed for the given accelerator and treatment room. We used Monte Carlo (MC) techniques based on EGS4 user codes (BEAM, DOSXYZ, and DOSRZ) as a guide in the beam modifier design of our TSEI system. The dosimetric characteristics at the treatment distance of 382 cm source-to-surface distance (SSD) were verified experimentally using a linear array of 47 ion chambers, a parallel plate chamber, and radiochromic film. By matching MC simulations to standard beam measurements at 100 cm SSD, the parameters of the electron beam incident on the vacuum window were determined. Best match was achieved assuming that electrons were monoenergetic at 6.72 MeV, parallel, and distributed in a circular pattern having a Gaussian radial distribution with full width at half maximum = 0.13 cm. These parameters were then used to simulate our TSEI unit with various scattering foils. Two of the foils were fabricated and experimentally evaluated by measuring off-axis dose uniformity and depth doses. A scattering foil, consisting of a 12 x 12 cm2 aluminum plate of 0.6 cm thickness and placed at isocenter perpendicular to the beam direction, was considered optimal. It produced a beam that was flat within +/-3% up to 60 cm off-axis distance, dropped by not more than 8% at a distance of 90 cm, and had an x-ray contamination of <3%. For stationary beams, MC-computed dmax, Rp, and R50 agreed with measurements within 0.5 mm. The MC-predicted surface dose of the rotating phantom was 41% of the dose rate at dmax of the stationary phantom, whereas our calculations based on a semiempirical formula in the literature yielded a drop to 42%. The MC simulations provided the guideline of beam modifier design for TSEI and estimated the dosimetric performance for stationary and rotational irradiations.
Collapse
Affiliation(s)
- Sung-Joon Ye
- Department of Radiation Oncology, The University of Alabama School of Medicine, 1824 6th Avenue South, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|