1
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
P-3F, a microtubule polymerization inhibitor enhances P53 stability through the change in localization of RPS27a. Int J Biochem Cell Biol 2017; 92:53-62. [DOI: 10.1016/j.biocel.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023]
|
3
|
Guo Z, Zhao J, Song L, Ma JX, Wang CJ, Pei SY, Jiang C, Li SB. Induction of H2AX phosphorylation in tumor cells by gossypol acetic acid is mediated by phosphatidylinositol 3-kinase (PI3K) family. Cancer Cell Int 2014; 14:141. [PMID: 25530717 PMCID: PMC4272777 DOI: 10.1186/s12935-014-0141-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND H2AX is phosphorylated (γH2AX) by members of the phosphatidylinositol 3-kinase (PI3K) family, including Ataxia telangiectasia-mutated (ATM), ATM- and Rad3-related (ATR) and DNA-PK in response to DNA damage. Our study shows that gossypol acetic acid (GAA) alone can induce γH2AX in Human mucoepidermoid carcinoma cell line (MEC-1) in vitro. Thus, we further examined the possible mechanisms of GAA to induce γH2AX in tumor cells. MATERIALS AND METHODS The PI3K inhibitors caffeine and wortmannin were used in an effort to identify the kinase(s) responsible for GAA -induced γH2AX in MEC-1 cells. DNA dependent protein kinase (DNA-PK) - proficient and -deficient cells, human glioma cell lines M059K and M059J, were also used to evaluate the kinases responsible for GAA induced H2AX phosphorylation. γH2AX expression was detected by immunofluorescent microscopy. Flow cytometry assay was used to assay γH2AX and cell cycle. RESULTS GAA induced H2AX phosphorylation in a cell cycle-dependent manner and a significant G0/G1 phase arrest in MEC-1 cells was shown. Caffeine and wortmannin significantly inhibited GAA-induced H2AX phosphorylation in MEC-1 cells. GAA induced H2AX phosphorylation in M059K, but not in M059J. Taken together, these data suggested that GAA treatment alone could induce H2AX phosphorylation in a cell cycle dependent manner in MEC-1 and M059K, but not in M059J cells. A significant G0/G1 phase arrest was shown in MEC-1. CONCLUSIONS The member of PI3K family, DNA-PK, ATM and ATR are involved in the H2AX phosphorylation of MEC-1 cells.
Collapse
Affiliation(s)
- Zhong Guo
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Jin Zhao
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Lei Song
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Jian-Xiu Ma
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Chen-Jing Wang
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Shu-Yan Pei
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Chao Jiang
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| | - Shang-Biao Li
- Medical College of Northwest University for Nationalities, Lanzhou, 730030 PR China
| |
Collapse
|
4
|
Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15:3403-31. [PMID: 24573252 PMCID: PMC3975345 DOI: 10.3390/ijms15033403] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
When a human cell detects damaged DNA, it initiates the DNA damage response (DDR) that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.
Collapse
|
5
|
The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression. PLoS One 2013; 8:e69061. [PMID: 23874869 PMCID: PMC3708908 DOI: 10.1371/journal.pone.0069061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 06/11/2013] [Indexed: 12/31/2022] Open
Abstract
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.
Collapse
|
6
|
Rodriguez-Lafrasse C, Balosso J. [From the carbon track to therapeutic efficiency of hadrontherapy]. Cancer Radiother 2012; 16:16-24. [PMID: 22285783 DOI: 10.1016/j.canrad.2011.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/18/2011] [Accepted: 06/16/2011] [Indexed: 01/28/2023]
Abstract
Carbon ions, thanks to their relative biological effectiveness much higher than that of photons and protons and their ballistic characteristics similar to those of protons, can effectively treat radioresistant tumours. The reasons for this increased efficiency are found in the microdosimetric and radiobiological features of ions. The energy deposit or linear energy transfer increases along the range and reaches a very high level at the end producing the Bragg peak, where the linear energy transfer is about hundred times higher than that of photons. These massive energy deposits create multiple DNA lesions that are difficult to repair. DNA repair is associated with longer blockage of the cell cycle and more frequent chromosomal aberrations that are lethal to cells. The types of cell death are identical to those triggered in response to photon irradiation, but the response is earlier and more important at equivalent physical dose. Radiobiological differences between carbon ions and photons have been studied for some years and many aspects remain to be explored. In general, these phenomena tend to reduce the differences of radiosensitivity among different tissues. It is therefore in situation where tumours are relatively radioresistant compared to healthy tissue, that carbon ions must be used and not in the opposite situations where the fractionation of low linear energy transfer radiation is sufficient to provide the necessary differential effect to cure the tumour.
Collapse
Affiliation(s)
- C Rodriguez-Lafrasse
- Radiobiologie cellulaire et moléculaire, EMR3738, faculté de médecine Lyon-Sud, université Lyon-1, 165, chemin du Grand-Revoyet, BP 12, 69921 Oullins cedex, France.
| | | |
Collapse
|
7
|
Gurung RL, Lim SN, Khaw AK, Soon JFF, Shenoy K, Mohamed Ali S, Jayapal M, Sethu S, Baskar R, Hande MP. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 2010; 5:e12124. [PMID: 20711342 PMCID: PMC2920825 DOI: 10.1371/journal.pone.0012124] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022] Open
Abstract
Background A major concern of cancer chemotherapy is the side effects caused by the non-specific targeting of both normal and cancerous cells by therapeutic drugs. Much emphasis has been placed on discovering new compounds that target tumour cells more efficiently and selectively with minimal toxic effects on normal cells. Methodology/Principal Findings The cytotoxic effect of thymoquinone, a component derived from the plant Nigella sativa, was tested on human glioblastoma and normal cells. Our findings demonstrated that glioblastoma cells were more sensitive to thymoquinone-induced antiproliferative effects. Thymoquinone induced DNA damage, cell cycle arrest and apoptosis in the glioblastoma cells. It was also observed that thymoquinone facilitated telomere attrition by inhibiting the activity of telomerase. In addition to these, we investigated the role of DNA-PKcs on thymoquinone mediated changes in telomere length. Telomeres in glioblastoma cells with DNA-PKcs were more sensitive to thymoquinone mediated effects as compared to those cells deficient in DNA-PKcs. Conclusions/Significance Our results indicate that thymoquinone induces DNA damage, telomere attrition by inhibiting telomerase and cell death in glioblastoma cells. Telomere shortening was found to be dependent on the status of DNA-PKcs. Collectively, these data suggest that thymoquinone could be useful as a potential chemotherapeutic agent in the management for brain tumours.
Collapse
Affiliation(s)
- Resham Lal Gurung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Ni Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Fen Fen Soon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kirthan Shenoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Safiyya Mohamed Ali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajamanickam Baskar
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
8
|
Cahuzac N, Studény A, Marshall K, Versteege I, Wetenhall K, Pfeiffer B, Léonce S, Hickman JA, Pierré A, Golsteyn RM. An unusual DNA binding compound, S23906, induces mitotic catastrophe in cultured human cells. Cancer Lett 2010; 289:178-87. [DOI: 10.1016/j.canlet.2009.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/04/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
|
9
|
Meador JA, Su Y, Ravanat JL, Balajee AS. DNA-dependent protein kinase (DNA-PK)-deficient human glioblastoma cells are preferentially sensitized by Zebularine. Carcinogenesis 2009; 31:184-91. [PMID: 19933707 DOI: 10.1093/carcin/bgp284] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain tumor cells respond poorly to radiotherapy and chemotherapy due to inherently efficient anti-apoptotic and DNA repair mechanisms. This necessitates the development of new strategies for brain cancer therapy. Here, we report that the DNA-demethylating agent Zebularine preferentially sensitizes the killing of human glioblastomas deficient in DNA-dependent protein kinase (DNA-PK). In contrast to DNA-PK-proficient human glioblastoma cells (MO59K), cytotoxicity assay with increasing Zebularine concentrations up to 300 microM resulted in a specific elevation of cell killing in DNA-PK-deficient MO59J cells. Further, an elevated frequency of polyploid cells observed in MO59J cells after Zebularine treatment pointed out a deficiency in mitotic checkpoint control. Existence of mitotic checkpoint deficiency in MO59J cells was confirmed by the abnormal centrosome number observed in Zebularine-treated MO59J cells. Although depletion of DNA methyltransferase 1 by Zebularine occurred at similar levels in both cell lines, MO59J cells displayed increased extent of DNA demethylation detected both at the gene promoter-specific level and at the genome overall level. Consistent with increased sensitivity, deoxy-Zebularine adduct level in the genomic DNA was 3- to 6-fold higher in MO59J than in MO59K cells. Elevated micronuclei frequency observed after Zebularine treatment in MO59J cells indicates the impairment of DNA repair response in MO59J cells. Collectively, our study suggests that DNA-PK is the major determining factor for cellular response to Zebularine.
Collapse
Affiliation(s)
- Jarah A Meador
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
10
|
Zhuang W, Qin Z, Liang Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai) 2009; 41:341-51. [PMID: 19430698 DOI: 10.1093/abbs/gmp028] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas represent the majority of primary brain tumors. The current standard treatments for malignant gliomas include surgical resection, radiation therapy, and chemotherapy. Radiotherapy, a standard adjuvant therapy, confers some survival advantages, but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment. The mechanisms underlying glioma cell radioresistance have remained elusive. Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm. Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. Also, autophagy is a novel response of glioma cells to ionizing radiation. Autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate a cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. The regulatory pathways of autophagy share several molecules. PI3K/Akt/mTOR, DNA-PK, tumor suppressor genes, mitochondrial damage, and lysosome may play important roles in radiation-induced autophagy in glioma cells. Recently, a highly tumorigenic glioma tumor subpopulation, termed cancer stem cell or tumor-initiating cell, has been shown to promote therapeutic resistance. This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.
Collapse
Affiliation(s)
- Wenzhuo Zhuang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou, China
| | | | | |
Collapse
|
11
|
Maalouf M, Alphonse G, Colliaux A, Beuve M, Trajkovic-Bodennec S, Battiston-Montagne P, Testard I, Chapet O, Bajard M, Taucher-Scholz G, Fournier C, Rodriguez-Lafrasse C. Different Mechanisms of Cell Death in Radiosensitive and Radioresistant P53 Mutated Head and Neck Squamous Cell Carcinoma Cell Lines Exposed to Carbon Ions and X-Rays. Int J Radiat Oncol Biol Phys 2009; 74:200-9. [DOI: 10.1016/j.ijrobp.2009.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 11/25/2022]
|
12
|
Ho PJ, Chou CK, Kuo YH, Tu LC, Yeh SF. Taiwanin A induced cell cycle arrest and p53-dependent apoptosis in human hepatocellular carcinoma HepG2 cells. Life Sci 2007; 80:493-503. [PMID: 17182066 DOI: 10.1016/j.lfs.2006.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/26/2006] [Accepted: 10/03/2006] [Indexed: 01/17/2023]
Abstract
Taiwanin A, a lignan isolated from Taiwania cryptomerioides Hayata, has previously been reported to have cytotoxicity against human tumor cells, but the mechanisms are unclear. In this study, we examined the molecular mechanism of cell death of human hepatocellular carcinoma HepG2 cells induced by Taiwanin A. Taiwanin A has been found to induce cell cycle arrest at G2/M phase as well as caspase-3-dependent apoptosis within 24 h. We performed both in vitro turbidity assay and immunofluorescence staining of tubulin to show that Taiwanin A can inhibit microtubule assembly. Moreover, the tumor suppressor protein p53 in HepG2 cells was activated by Taiwanin A within 12 h. Inhibition of p53 by either pifithrin-alpha or by short hairpin RNA which blocks p53 expression attenuates Taiwanin A cytotoxicity. Our results demonstrate that Taiwanin A can act as a new class of microtubule damaging agent, arresting cell cycle progression at mitotic phase and inducing apoptosis through the activation of p53.
Collapse
Affiliation(s)
- Pai-Jiun Ho
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
13
|
Cao C, Shinohara ET, Subhawong TK, Geng L, Kim KW, Albert JM, Hallahan DE, Lu B. Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol Cancer Ther 2006; 5:411-7. [PMID: 16505116 DOI: 10.1158/1535-7163.mct-05-0356] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 plays a critical role in cell cycle arrest and induction of apoptosis. Certain malignancies carry wild-type p53, which is frequently down-regulated by murine double minute 2 (MDM2) overexpression. Availability of a small-molecule inhibitor against MDM2, nutlin, has made it feasible to evaluate the anti-MDM2-based therapeutic strategies. The rationale for the current study is that functional p53 has been linked with improved responses to radiation treatment. Hence, this study evaluates the use of nutlin, a small-molecule inhibitor that blocks the interaction of p53 and MDM2, in sensitizing cancer cells to radiation. Expression of MDM2, p53, and p21 in both p53 wild-type and p53-defective lung cancer cell lines was examined. Clonogenic and 7-amino-actinomycin D studies were used to determine possible mechanisms of cell death. The combined effect of MDM2 inhibition and radiation on cell cycle was also studied. We found that radiosensitization by nutlin occurs in lung cancer cells with wild-type p53. There were increased apoptosis and cell cycle arrest following administration of nutlin and radiation. Furthermore, the combination of nutlin and radiation decreased the ability of endothelial cells to form vasculature, as shown by Matrigel assays. Our data suggest that nutlin is an effective radiosensitizer of p53 wild-type cells. The radiosensitizing effect seems to be at least partially due to induction of apoptosis and cell cycle arrest. In addition, nutlin may be an effective radiosensitizer of tumor vasculature.
Collapse
Affiliation(s)
- Carolyn Cao
- Department of Radiation Oncology, B-902, The Vanderbilt Clinic, Vanderbilt University, 1301 22nd Avenue South, Nashville, TN 37232-5671, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dirksen EHC, Cloos J, Braakhuis BJM, Brakenhoff RH, Heck AJR, Slijper M. Human Lymphoblastoid Proteome Analysis Reveals a Role for the Inhibitor of Acetyltransferases Complex in DNA Double-Strand Break Response. Cancer Res 2006; 66:1473-80. [PMID: 16452203 DOI: 10.1158/0008-5472.can-05-2129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A DNA double-strand break (DSB) is highly cytotoxic; it emerges as the type of DNA damage that most severely affects the genomic integrity of the cell. It is essential that DNA DSBs are recognized and repaired efficiently, in particular, prior to mitosis, to prevent genomic instability and eventually, the development of cancer. To assess the pathways that are induced on DNA DSBs, 14 human lymphoblastoid cell lines were challenged with bleomycin for 30 and 240 minutes to establish the fast and more prolonged response, respectively. The proteomes of 14 lymphoblastoid cell lines were investigated to account for the variation among individuals. The primary DNA DSB response was expected to occur within the nucleus; therefore, the nuclear extracts were considered. Differential analysis was done using two-dimensional difference in gel electrophoresis; paired ANOVA statistics were used to recognize significant changes in time. Many proteins whose nuclear levels changed statistically significantly showed a fast response, i.e., within 30 minutes after bleomycin challenge. A significant number of these proteins could be assigned to known DNA DSB response processes, such as sensing DSBs (Ku70), DNA repair through effectors (high-mobility group protein 1), or cell cycle arrest at the G(2)-M phase checkpoint (14-3-3 zeta). Interestingly, the nuclear levels of all three proteins in the INHAT complex were reduced after 30 minutes of bleomycin challenge, suggesting that this complex may have a role in changing the chromatin structure, allowing the DNA repair enzymes to gain access to the DNA lesions.
Collapse
Affiliation(s)
- Eef H C Dirksen
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 15, 3584 CA Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The progressive loss of laminin 5 and the alpha6beta4 integrin is a characteristic of the transition of prostatic intraepithelial neoplasia (PIN) to invasive human prostate cancer. Our objective was to determine if the loss of the interaction with laminin 5 would influence the ability of human epithelial cells to respond to DNA damage. Three cellular damage responses to ionizing radiation (IR) were analyzed including G2 progression, cdc2 phosphorylation, and cell survival. The adhesion of normal human prostate epithelial cells to laminin 5 amplified the G2 arrest induced by IR, and depends on a known cell binding domain of laminin 5. The alteration of G2 arrest was confirmed by an inhibition of phospho-cdc2 nuclear translocation. In contrast, a prostate epithelial cancer cell line blocked in G2 independent of adhesion to laminin 5. The survival of these cell lines in response to IR was unaffected by adhesion to laminin 5. These results suggest that cell adhesion to laminin 5 in normal cells will amplify the IR induced G2 cell cycle progression block without altering cell survival. The loss of laminin 5 and the alpha6beta4 integrin in PIN lesions may contribute to the selection and progression of genetically unstable cell types via attenuation of a DNA damage induced G2 arrest.
Collapse
Affiliation(s)
| | - Monika Schmelz
- Southern Arizona Veterans Affair Health Care System, Tucson, Arizona
| | - Anne E. Cress
- Arizona Cancer Center, University of Arizona, Tucson, Arizona
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona
- Correspondence to: Anne E. Cress, Arizona Cancer Center, 1515 N Campbell Ave, Tucson Arizona 85724. E-mail:
| |
Collapse
|