1
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Cao W, Rocha H, Mohan R, Lim G, Goudarzi HM, Ferreira BC, Dias JM. Reflections on beam configuration optimization for intensity-modulated proton therapy. Phys Med Biol 2022; 67. [PMID: 35561700 DOI: 10.1088/1361-6560/ac6fac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Presumably, intensity-modulated proton radiotherapy (IMPT) is the most powerful form of proton radiotherapy. In the current state of the art, IMPT beam configurations (i.e. the number of beams and their directions) are, in general, chosen subjectively based on prior experience and practicality. Beam configuration optimization (BCO) for IMPT could, in theory, significantly enhance IMPT’s therapeutic potential. However, BCO is complex and highly computer resource-intensive. Some algorithms for BCO have been developed for intensity-modulated photon therapy (IMRT). They are rarely used clinically mainly because the large number of beams typically employed in IMRT renders BCO essentially unnecessary. Moreover, in the newer form of IMRT, volumetric modulated arc therapy, there are no individual static beams. BCO is of greater importance for IMPT because it typically employs a very small number of beams (2-4) and, when the number of beams is small, BCO is critical for improving plan quality. However, the unique properties and requirements of protons, particularly in IMPT, make BCO challenging. Protons are more sensitive than photons to anatomic changes, exhibit variable relative biological effectiveness along their paths, and, as recently discovered, may spare the immune system. Such factors must be considered in IMPT BCO, though doing so would make BCO more resource intensive and make it more challenging to extend BCO algorithms developed for IMRT to IMPT. A limited amount of research in IMPT BCO has been conducted; however, considerable additional work is needed for its further development to make it truly effective and computationally practical. This article aims to provide a review of existing BCO algorithms, most of which were developed for IMRT, and addresses important requirements specific to BCO for IMPT optimization that necessitate the modification of existing approaches or the development of new effective and efficient ones.
Collapse
|
3
|
Guo Z, Buonanno M, Harken A, Zhou G, Hei TK. Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons. Radiat Res 2022; 197:569-582. [PMID: 35290449 DOI: 10.1667/rade-21-00181.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
Radiation therapy (RT) plays an important role in cancer treatment. The clinical efficacy of radiation therapy is, however, limited by normal tissue toxicity in areas surrounding the irradiated tumor. Compared to conventional radiation therapy (CONV-RT) in which doses are typically delivered at dose rates between 0.03-0.05 Gy/s, there is evidence that radiation delivered at dose rates of orders of magnitude higher (known as FLASH-RT), dramatically reduces the adverse side effects in normal tissues while achieving similar tumor control. The present study focused on normal cell response and tested the hypothesis that proton-FLASH irradiation preserves mitochondria function of normal cells through the induction of phosphorylated Drp1. Normal human lung fibroblasts (IMR90) were irradiated under ambient oxygen concentration (21%) with protons (LET = 10 keV/μm) delivered at dose rates of either 0.33 Gy/s or 100 Gy/s. Mitochondrial dynamics, functions, cell growth and changes in protein expression levels were investigated. Compared to lower dose-rate proton irradiation, FLASH-RT prevented mitochondria damage characterized by morphological changes, functional changes (membrane potential, mtDNA copy number and oxidative enzyme levels) and oxyradical production. After CONV-RT, the phosphorylated form of Dynamin-1-like protein (p-Drp1) underwent dephosphorylation and aggregated into the mitochondria resulting in mitochondria fission and subsequent cell death. In contrast, p-Drp1 protein level did not significantly change after delivery of similar FLASH doses. Compared with CONV irradiation, FLASH irradiation using protons induces minimal mitochondria damage; our results highlight a possible contribution of Drp1-mediated mitochondrial homeostasis in this potential novel cancer treatment modality.
Collapse
Affiliation(s)
- Ziyang Guo
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.,Department of Ultrasound Medicine, Peking University First Hospital, Beijing, China
| | - Manuela Buonanno
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Andrew Harken
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| |
Collapse
|
4
|
Lu S, Fan H, Hu X, Li X, Kuang Y, Yu D, Yang S. Dosimetric Comparison of Helical Tomotherapy, Volume-Modulated Arc Therapy, and Fixed-Field Intensity-Modulated Radiation Therapy in Locally Advanced Nasopharyngeal Carcinoma. Front Oncol 2021; 11:764946. [PMID: 34804969 PMCID: PMC8602559 DOI: 10.3389/fonc.2021.764946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To compare the dosimetric parameters of different radiotherapy plans [helical tomotherapy (HT), volume-modulated arc therapy (VMAT), and fixed-field intensity-modulated radiation therapy (FF-IMRT)] for locally advanced nasopharyngeal carcinoma (NPC). METHODS A total of 15 patients with locally advanced NPC were chosen for this retrospective analysis and replanned for HT, VMAT, and FF-IMRT. The prescribed planning target volume (PTV) dose for the primary tumor and metastatic lymph nodes was 70 Gy (2.12 Gy/fraction, delivered over 33 fractions). The prescribed PTV dose for the high-risk subclinical region was 59.4 Gy (1.8 Gy/fraction, delivered over 33 fractions). The dosimetric parameters of the PTV and organs at risk (OARs) and the efficiency of radiation delivery were assessed and compared using the paired-samples t-test. RESULTS Compared with VMAT and FF-IMRT plans, HT plans significantly improved the mean conformity index (CI) and homogeneity index (HI). The HT plans reduced the maximum doses delivered to OARs, such as the brainstem, spinal cord, and optic nerves, and significantly reduced the volume delivered to the high-dose region, especially when examining the V 30 value of the parotid glands. However, VMAT reduced the treatment time and improved the efficiency of radiation delivery compared with HT. CONCLUSIONS For locally advanced NPC, the results showed that HT and VMAT possessed better target homogeneity and conformity, reducing the dose delivered to OARs compared with conventional FF-IMRT, with HT achieving the best effect. Among the techniques studied, VMAT had the shortest radiation delivery time. The results of this study can provide guidance for the selection of appropriate radiation technologies used to treat patients with locally advanced NPC who are undergoing concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Shan Lu
- Department of Head and Neck Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huiqi Fan
- Department of Head and Neck Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueyuan Hu
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Li
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingying Kuang
- Department of Head and Neck Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Deyang Yu
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Yu AS, Maxim PG, Loo BW, Gensheimer MF. Chest wall dose reduction using noncoplanar volumetric modulated arc radiation therapy for lung stereotactic ablative radiation therapy. Pract Radiat Oncol 2017; 8:e199-e207. [PMID: 29452868 DOI: 10.1016/j.prro.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
PURPOSE Stereotactic ablative radiation therapy (SABR) to lung tumors close to the chest wall can cause rib fractures or chest wall pain. We evaluated and propose a clinically practical solution of using noncoplanar volumetric modulated arc radiation therapy (VMAT) to reduce chest wall dose from lung SABR. METHODS AND MATERIALS Twenty lung SABR VMAT plans in which the chest wall volume receiving 30 Gy or higher (V30) exceeded 30 mL were replanned by noncoplanar VMAT with opposite 15° couch kicks. Dosimetric parameters including chest wall V30 and V40; lung V5, V10, V20, and mean dose; Paddick high-dose conformity index; intermediate-dose conformity index; and monitor units (MU) for each plan were used to evaluate the plan quality. The treatment time was also estimated by delivering the entire treatment. Two-sided paired t test was used to evaluate the difference of the dosimetric parameters between coplanar 1 arc (cVMAT1), coplanar 2 arcs (cVMAT2), and noncoplanar two arcs (nVMAT2) plans; differences with P < .05 were considered statistically significant. RESULTS V30 and V40 for chest wall were reduced on average by 20% ± 9% and 15% ± 11% (mean ± standard deviation) from cVMAT2 plans to nVMAT2 plans (P < .01 for both comparisons) and by 8% ± 7% and 16% ± 13% from cVMAT1 plans to cVMAT2 plans (P < .003 for both comparisons). The differences in lung mean dose were <0.2 Gy among cVMAT1, cVMAT2, and nVMAT2. There were no significant differences in lung V5, V10, and V20. On average, the number of MU increased 14% for nVMAT2 compared with cVMAT2. The Paddick high-dose conformity indexes were 0.88 ± 0.03, 0.89 ± 0.04, and 0.91 ± 0.03, and intermediate-dose conformity indexes were 3.88 ± 0.49, 3.80 ± 0.44 and 3.51 ± 0.38 for cVMAT1, cVMAT2, and nVMAT2, respectively. CONCLUSIONS We found that noncoplanar VMAT plans are feasible, clinically practical to deliver, and significantly reduce V30 and V40 of chest wall without increasing lung dose.
Collapse
Affiliation(s)
- Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| | - Peter G Maxim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael F Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
7
|
Zeng ZC, Seong J, Yoon SM, Cheng JCH, Lam KO, Lee AS, Law A, Zhang JY, Hu Y. Consensus on Stereotactic Body Radiation Therapy for Small-Sized Hepatocellular Carcinoma at the 7th Asia-Pacific Primary Liver Cancer Expert Meeting. Liver Cancer 2017; 6:264-274. [PMID: 29234630 PMCID: PMC5704685 DOI: 10.1159/000475768] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Stereotactic body radiation therapy (SBRT) is an advanced technique of external beam radiation therapy that delivers large ablative doses of radiation. In the past decade, many cancer centers have adopted SBRT as one mode of radically treating small-sized hepatocellular carcinoma (HCC), based on encouraging clinical outcomes. SBRT thus seems reasonable as first-line treatment of inoperable HCC confined to the liver. However, most of the clinical studies to date have been retrospective in nature, with key issues still under investigation. SUMMARY The above-mentioned publications were subjected to scrutiny, fueling discussions at the 7th Asia-Pacific Primary Liver Cancer Expert (APPLE 2016) Meeting on various clinical variables, such as indications for SBRT, therapeutic outcomes, treatment-related toxicities, doses prescribed, and specific techniques. The consensus reached should be of interest to all professionals active in the treatment of HCC, especially radiation oncologists. KEY MESSAGES SBRT is a safe and effective therapeutic option for patients with small-sized HCC, offering substantial local control, improved overall survival, and low toxicity.
Collapse
Affiliation(s)
- Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea,*Jinsil Seong, MD, PhD, Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea), E-Mail , Zhao-Chong Zeng, MD, PhD, Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032 (China), E-Mail
| | - Sang Min Yoon
- Department of Radiation Oncology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Ka-On Lam
- Department of Clinical Oncology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Ann-Shing Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong, SAR, China
| | - Ada Law
- Department of Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, China
| | - Jian-Ying Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Fitzgerald R, Owen R, Hargrave C, Pryor D, Lehman M, Bernard A, Mai T, Seshadri V, Fielding A. A Comparison of Non-coplanar Three-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Radiation Therapy for the Delivery of Stereotactic Ablative Radiation Therapy to Peripheral Lung Cancer. J Med Imaging Radiat Sci 2017; 48:360-369. [PMID: 31047471 DOI: 10.1016/j.jmir.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
AIM The objective of the study was to compare three noncoplanar delivery techniques (three-dimensional conformal radiation therapy [3DCRT], intensity-modulated radiation therapy [IMRT], and volumetric-modulated arc therapy [VMAT]) for the delivery of lung stereotactic ablative radiation therapy to peripheral lung tumours. METHODS AND MATERIALS The plans were compared by assessing the planning target volume coverage, doses to organs at risk, high and intermediate dose constraints (D2cm and R50%) and delivery times using analysis of variance for repeated measurements or Friedman's test when appropriate. RESULTS Mean PTV54 Gy coverage was found to be 95.6%, 95.7%, and 95.6% for the 3DCRT, IMRT, and VMAT techniques, respectively. No deviations to the intermediate dose constraints were found in 65%, 65%, and 85% of the patients for the 3DCRT, IMRT, and VMAT plans, respectively. Mean treatment times (excluding setup and imaging) were 20.0 minutes (±1.67), 25.2 minutes (±2.15), and 11.7 (±2.0) minutes respectively for 3DCRT, IMRT, and VMAT. CONCLUSION A noncoplanar VMAT technique was found to provide superior intermediate dose sparing with comparable prescription dose coverage when compared with noncoplanar 3DCRT or IMRT. In addition, VMAT was found to reduce the treatment times of stereotactic ablative radiation therapy delivery for peripheral lung tumours.
Collapse
Affiliation(s)
- Rhys Fitzgerald
- Icon Integrated Cancer Care Centre, Bundaberg, Queensland, Australia; Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Rebecca Owen
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Catriona Hargrave
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Radiation Oncology, Princess Alexandra Hospital, Raymond Tce, Queensland Health, Brisbane, Queensland, Australia
| | - David Pryor
- Radiation Oncology, Princess Alexandra Hospital, Ipswich Rd, Queensland Health, Brisbane, Queensland, Australia
| | - Margot Lehman
- Radiation Oncology, Princess Alexandra Hospital, Ipswich Rd, Queensland Health, Brisbane, Queensland, Australia
| | - Anne Bernard
- QFAB Bioinformatics, Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Tao Mai
- Radiation Oncology, Princess Alexandra Hospital, Ipswich Rd, Queensland Health, Brisbane, Queensland, Australia
| | - Venkatakrishnan Seshadri
- Radiation Oncology, Princess Alexandra Hospital, Ipswich Rd, Queensland Health, Brisbane, Queensland, Australia
| | - Andrew Fielding
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Yip SSF, Rottmann J, Berbeco RI. Beam's-eye-view imaging during non-coplanar lung SBRT. Med Phys 2016; 42:6776-83. [PMID: 26632035 DOI: 10.1118/1.4934824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Beam's-eye-view (BEV) imaging with an electronic portal imaging device (EPID) can be performed during lung stereotactic body radiation therapy (SBRT) to monitor the tumor location in real-time. Image quality for each patient and treatment field depends on several factors including the patient anatomy and the gantry and couch angles. The authors investigated the angular dependence of automatic tumor localization during non-coplanar lung SBRT delivery. METHODS All images were acquired at a frame rate of 12 Hz with an amorphous silicon EPID. A previously validated markerless lung tumor localization algorithm was employed with manual localization as the reference. From ten SBRT patients, 12 987 image frames of 123 image sequences acquired at 48 different gantry-couch rotations were analyzed. δ was defined by the position difference of the automatic and manual localization. RESULTS Regardless of the couch angle, the best tracking performance was found in image sequences with a gantry angle within 20° of 250° (δ = 1.40 mm). Image sequences acquired with gantry angles of 150°, 210°, and 350° also led to good tracking performances with δ = 1.77-2.00 mm. Overall, the couch angle was not correlated with the tracking results. Among all the gantry-couch combinations, image sequences acquired at (θ = 30°, ϕ = 330°), (θ = 210°, ϕ = 10°), and (θ = 250°, ϕ = 30°) led to the best tracking results with δ = 1.19-1.82 mm. The worst performing combinations were (θ = 90° and 230°, ϕ = 10°) and (θ = 270°, ϕ = 30°) with δ > 3.5 mm. However, 35% (17/48) of the gantry-couch rotations demonstrated substantial variability in tracking performances between patients. For example, the field angle (θ = 70°, ϕ = 10°) was acquired for five patients. While the tracking errors were ≤1.98 mm for three patients, poor performance was found for the other two patients with δ ≥ 2.18 mm, leading to average tracking error of 2.70 mm. Only one image sequence was acquired for all other gantry-couch rotations (δ = 1.18-10.29 mm). CONCLUSIONS Non-coplanar beams with gantry-couch rotation of (θ = 30°, ϕ = 330°), (θ = 210°, ϕ = 10°), and (θ = 250°, ϕ = 30°) have the highest accuracy for BEV lung tumor localization. Additionally, gantry angles of 150°, 210°, 250°, and 350° also offer good tracking performance. The beam geometries (θ = 90° and 230°, ϕ = 10°) and (θ = 270°, ϕ = 30°) are associated with substantial automatic localization errors. Overall, lung tumor visibility and tracking performance were patient dependent for a substantial number of the gantry-couch angle combinations studied.
Collapse
Affiliation(s)
- Stephen S F Yip
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Joerg Rottmann
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ross I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Stereotactic Body Radiation Therapy for Liver Cancer: A Review of the Technology. J Med Imaging Radiat Sci 2015; 46:343-350. [PMID: 31052142 DOI: 10.1016/j.jmir.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/25/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy has been adopted in the treatment of liver cancer because of its highly conformal dose distribution when compared with other conventional approaches, and many studies have been published to report the positive clinical outcome associated with this technique. To achieve the precision needed to maintain or to improve the therapeutic ratio, various strategies are applied in different components in the stereotactic body radiation therapy process. Immobilization devices are used in minimizing geometric uncertainty induced by treatment positioning and internal organ motion. Along with a better definition of target by the integration of multimodality imaging, planning target volume margin to compensate for the uncertainty can be reduced to minimize inclusion of normal tissue in the treatment volume. In addition, sparing of normal tissue from irradiation is improved by the use of high precision treatment delivery technologies such as intensity-modulated radiotherapy or volumetric modulated arc therapy. Target localization before treatment delivery with image guidance enables reproduction of the patient's geometry for delivering the planned dose. The application of these advanced technologies contributes to the evolution of the role of radiation therapy in the treatment of liver cancer, making it an important radical or palliative treatment modality.
Collapse
|
11
|
Wakai N, Sumida I, Otani Y, Suzuki O, Seo Y, Isohashi F, Yoshioka Y, Hasegawa M, Ogawa K. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam. Med Phys 2015; 42:2125-31. [DOI: 10.1118/1.4916683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Simeonova AO, Fleckenstein K, Wertz H, Frauenfeld A, Boda-Heggemann J, Lohr F, Wenz F. Are three doses of stereotactic ablative radiotherapy (SABR) more effective than 30 doses of conventional radiotherapy? Transl Lung Cancer Res 2015; 1:45-53. [PMID: 25806154 DOI: 10.3978/j.issn.2218-6751.10.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/24/2011] [Indexed: 12/29/2022]
Abstract
In early stage non-small cell lung cancer (NSCLC) definitive radiation therapy is an appropriate alternative to surgery. Recent studies show, that in such patients hypofractionation schedules (for example 3 times 18 Gy or 5 times 12 Gy), can be safely applied, without causing severe toxicities and achieving high local control rates of up to 90% and more. In the last couple of years a lot of knowledge about the cancer biology, technical aspects, clinical outcomes and toxicities has been accumulated from different clinical trials. The purpose of this review is to summarize recent outcomes and developments in stereotactic radiation therapy for patients with early stage NSCLC.
Collapse
Affiliation(s)
- Anna O Simeonova
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katharina Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hansjörg Wertz
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anian Frauenfeld
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frank Lohr
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Pham D, Thompson A, Kron T, Foroudi F, Kolsky MS, Devereux T, Lim A, Siva S. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity. Int J Radiat Oncol Biol Phys 2014; 90:1061-8. [DOI: 10.1016/j.ijrobp.2014.07.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022]
|
14
|
Nair VJ, Pantarotto JR. Treatment of metastatic liver tumors using stereotactic ablative radiotherapy. World J Radiol 2014; 6:18-25. [PMID: 24578789 PMCID: PMC3935063 DOI: 10.4329/wjr.v6.i2.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
The prognosis of patients with metastatic liver disease remains dismal with a median survival of only 6-12 mo. As 80%-90% of patients are not candidates for surgical therapy, there is a need for effective non-surgical therapies that would improve outcomes in these patients. The body of evidence related to the use of stereotactic ablative radiotherapy (SABR) in metastatic liver disease has substantially grown and evolved over the past decade. This review summarizes the current evidence supporting liver SABR with particular attention given to patient selection, target delineation, organ at risk dose volume constraints, response evaluation imaging and the various SABR techniques for delivering ablative radiotherapy to the liver. Even though it is unclear what dose-fractionation scheme, delivery system, concomitant therapy or patient selection strategy yields the optimum liver SABR outcomes, clear and growing evidence is available that SABR is a safe and effective therapy for the treatment of oligometastatic liver disease.
Collapse
|
15
|
Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: Effect on target and normal-structure dose-volume metrics. Med Dosim 2013; 38:407-12. [DOI: 10.1016/j.meddos.2013.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/23/2022]
|
16
|
Similar-case-based optimization of beam arrangements in stereotactic body radiotherapy for assisting treatment planners. BIOMED RESEARCH INTERNATIONAL 2013; 2013:309534. [PMID: 24294603 PMCID: PMC3835834 DOI: 10.1155/2013/309534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/21/2013] [Indexed: 12/16/2022]
Abstract
Objective. To develop a similar-case-based optimization method for beam arrangements in lung stereotactic body radiotherapy (SBRT) to assist treatment planners. Methods. First, cases that are similar to an objective case were automatically selected based on geometrical features related to a planning target volume (PTV) location, PTV shape, lung size, and spinal cord position. Second, initial beam arrangements were determined by registration of similar cases with the objective case using a linear registration technique. Finally, beam directions of the objective case were locally optimized based on the cost function, which takes into account the radiation absorption in normal tissues and organs at risk. The proposed method was evaluated with 10 test cases and a treatment planning database including 81 cases, by using 11 planning evaluation indices such as tumor control probability and normal tissue complication probability (NTCP). Results. The procedure for the local optimization of beam arrangements improved the quality of treatment plans with significant differences (P < 0.05) in the homogeneity index and conformity index for the PTV, V10, V20, mean dose, and NTCP for the lung. Conclusion. The proposed method could be usable as a computer-aided treatment planning tool for the determination of beam arrangements in SBRT.
Collapse
|
17
|
Yarmand H, Winey B, Craft D. Guaranteed epsilon-optimal treatment plans with the minimum number of beams for stereotactic body radiation therapy. Phys Med Biol 2013; 58:5931-44. [PMID: 23920378 DOI: 10.1088/0031-9155/58/17/5931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is characterized by delivering a high amount of dose in a short period of time. In SBRT the dose is delivered using open fields (e.g., beam's-eye-view) known as 'apertures'. Mathematical methods can be used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to surrounding organs at risk (OARs) minimal. Two important elements of a treatment plan are quality and delivery time. Quality of a plan is measured based on the target coverage and dose to OARs. Delivery time heavily depends on the number of beams used in the plan as the setup times for different beam directions constitute a large portion of the delivery time. Therefore the ideal plan, in which all potential beams can be used, will be associated with a long impractical delivery time. We use the dose to OARs in the ideal plan to find the plan with the minimum number of beams which is guaranteed to be epsilon-optimal (i.e., a predetermined maximum deviation from the ideal plan is guaranteed). Since the treatment plan optimization is inherently a multi-criteria-optimization problem, the planner can navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing epsilon-optimality. We use mixed integer programming (MIP) for optimization. To reduce the computation time for the resultant MIP, we use two heuristics: a beam elimination scheme and a family of heuristic cuts, known as 'neighbor cuts', based on the concept of 'adjacent beams'. We show the effectiveness of the proposed technique on two clinical cases, a liver and a lung case. Based on our technique we propose an algorithm for fast generation of epsilon-optimal plans.
Collapse
Affiliation(s)
- Hamed Yarmand
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
18
|
Høyer M, Swaminath A, Bydder S, Lock M, Méndez Romero A, Kavanagh B, Goodman KA, Okunieff P, Dawson LA. Radiotherapy for liver metastases: a review of evidence. Int J Radiat Oncol Biol Phys 2012; 82:1047-57. [PMID: 22284028 DOI: 10.1016/j.ijrobp.2011.07.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/12/2011] [Accepted: 07/25/2011] [Indexed: 12/14/2022]
Abstract
Over the past decade, there has been an increasing use of radiotherapy (RT) for the treatment of liver metastases. Most often, ablative doses are delivered to focal liver metastases with the goal of local control and ultimately improving survival. In contrast, low-dose whole-liver RT may be used for the palliation of symptomatic diffuse metastases. This review examines the available clinical data for both approaches. The review found that RT is effective both for local ablation of focal liver metastases and for palliation of patients with symptomatic liver metastases. However, there is a lack of a high level of evidence from randomized clinical trials.
Collapse
Affiliation(s)
- Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brock J, Bedford J, Partridge M, McDonald F, Ashley S, McNair HA, Brada M. Optimising stereotactic body radiotherapy for non-small cell lung cancer with volumetric intensity-modulated arc therapy--a planning study. Clin Oncol (R Coll Radiol) 2012; 24:68-75. [PMID: 21396808 DOI: 10.1016/j.clon.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 12/25/2022]
Abstract
AIMS The potential advantages of stereotactic body radiotherapy (SBRT) for early stage non-small cell lung cancer (NSCLC) over conventional fractionated radiotherapy include a higher biological effective dose, a reduction in accelerated repopulation, greater patient convenience and reduced demand on radiotherapy resources. Before introducing SBRT in our department, a review of planning and delivery was undertaken, starting with an assessment of optimum beam number and arrangement. MATERIALS AND METHODS Radiotherapy planning computed tomography scans for five patients previously treated for T1 peripheral NSCLC were selected. In each the contoured tumour had planning target volume (PTV) margins of 1cm in all directions. Forward-planned three-field coplanar and non-coplanar plans and a seven-field coplanar plan were produced and optimised. In-house inverse-planning software (AutoBeam) was used to generate three-, five-, seven- and nine-field coplanar and non-coplanar plans and two volumetric intensity-modulated arc therapy (VMAT) plans. The resulting V(20), V(11), PTV(90), PTV(95) and mean lung dose were compared. RESULTS Analysis of variance showed non-coplanar plans to have lower V(11) and higher PTV(90) and PTV(95) than coplanar plans. VMAT showed equivalent V(20) and target coverage when compared with the best non-coplanar plans, but with a faster delivery time (2min 8s versus 12min 40s). CONCLUSIONS Inverse-planned five-field non-coplanar plans and VMAT improve target coverage while minimising the higher dose to normal lung tissue for SBRT of NSCLC compared with coplanar beam arrangements. VMAT is preferable because of significantly shorter treatment delivery times.
Collapse
Affiliation(s)
- J Brock
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Variable Circular Collimator in Robotic Radiosurgery: A Time-Efficient Alternative to a Mini-Multileaf Collimator? Int J Radiat Oncol Biol Phys 2011; 81:863-70. [DOI: 10.1016/j.ijrobp.2010.12.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 11/03/2010] [Accepted: 12/06/2010] [Indexed: 11/20/2022]
|
21
|
Bujold A, Dawson LA. Stereotactic radiation therapy and selective internal radiation therapy for hepatocellular carcinoma. Cancer Radiother 2011; 15:54-63. [PMID: 21239204 DOI: 10.1016/j.canrad.2010.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 12/17/2022]
Abstract
Recent technological advances allow precise and safe radiation delivery in hepatocellular carcinoma. Stereotactic body radiotherapy is a conformal external beam radiation technique that uses a small number of relatively large fractions to deliver potent doses of radiation therapy to extracranial sites. It requires stringent breathing motion control and image guidance. Selective internal radiotherapy or radioembolization refers to the injection of radioisotopes, usually delivered to liver tumors via the hepatic artery. Clinical results for both treatments show that excellent local control is possible with acceptable toxicity. Most appropriate patient populations and when which type of radiation therapy should be best employed in the vast therapeutic armamentarium of hepatocellular carcinoma are still to be clarified.
Collapse
Affiliation(s)
- A Bujold
- Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Lee MT, Purdie TG, Eccles CL, Sharpe MB, Dawson LA. Comparison of simple and complex liver intensity modulated radiotherapy. Radiat Oncol 2010; 5:115. [PMID: 21114865 PMCID: PMC3003186 DOI: 10.1186/1748-717x-5-115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/30/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence. METHODS An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans. RESULTS Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001). CONCLUSIONS Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity.
Collapse
Affiliation(s)
- Mark T Lee
- Radiation Medicine Program, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
- Radiation Oncology Department, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Thomas G Purdie
- Radiation Medicine Program, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia L Eccles
- CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford Cancer Centre, Churchill Hospital, Oxford, UK
| | - Michael B Sharpe
- Radiation Medicine Program, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Hoppe BS, Huh S, Flampouri S, Nichols RC, Oliver KR, Morris CG, Mendenhall NP, Li Z. Double-scattered proton-based stereotactic body radiotherapy for stage I lung cancer: a dosimetric comparison with photon-based stereotactic body radiotherapy. Radiother Oncol 2010; 97:425-30. [PMID: 20934768 DOI: 10.1016/j.radonc.2010.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/01/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) has gained popularity in the treatment of early-stage non-small-cell lung cancer (NSCLC) because of its ability to deliver conformal radiation doses to small targets. However, photon-based SBRT (xSBRT) is associated with significant grade 3+ toxicities. In this study, we compare xSBRT treatment plans with proton-based SBRT (pSBRT) to determine whether dose to normal structures could be reduced if SBRT was delivered with protons. MATERIALS AND METHODS Eight patients with medically inoperable, peripherally located stage I NSCLC were treated with xSBRT to 48 Gy in 4 12-Gy fractions. These patients were retrospectively re-planned using the same treatment volumes with 3-dimensional conformal double-scatter proton therapy. A Wilcoxon paired test compared dosimetric parameters between the plans for each patient. RESULTS Compared with xSBRT there was a dosimetric improvement with pSBRT for these volumes: lung V5 (median difference [MD]=10.4%, p=0.01); V10 (MD=6.4%, p=0.01); V20 (MD=2.1%, p=0.01); V40 (MD=1.5%, p=0.05); and mean lung dose (MD=2.17 Gy, p=0.01). There were also benefits (p=<0.05) in D0.1cm3 and D5cm3 with pSBRT to the heart, esophagus, and bronchus. CONCLUSIONS In a dosimetric comparison between photon and proton-based SBRT, protons resulted in lower doses to critical organs at risk and a smaller volume of non-targeted normal lung exposed to radiation (V5, V10, V20, and V40). The clinical significance and relevance of these dosimetric improvements remain unknown.
Collapse
Affiliation(s)
- Bradford S Hoppe
- University of Florida Proton Therapy Institute, Jacksonville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Roland T, Shi C, Liu Y, Crownover R, Mavroidis P, Papanikolaou N. Tradeoffs for assuming rigid target motion in Mlc-based real time target tracking radiotherapy: a dosimetric and radiobiological analysis. Technol Cancer Res Treat 2010; 9:199-210. [PMID: 20218742 DOI: 10.1177/153303461000900209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We report on our assessment of two types of real time target tracking modalities for lung cancer radiotherapy namely (1) single phase propagation (SPP) where motion compensation assumes a rigid target and (2) multi-phase propagation (MPP) where motion compensation considers a deformable target. In a retrospective study involving 4DCT volumes from six (n=6) previously treated lung cancer patients, four-dimensional treatment plans representative of the delivery scenarios were generated per modality and the corresponding dose distributions were derived. The modalities were then evaluated (a) Dosimetrically for target coverage adequacy and normal tissue sparing by computing the mean GTV dose, relative conformity gradient index (CGI), mean lung dose (MLD) and lung V(2)0; (b) Radiobiologically by calculating the biological effective uniform dose (D) for the target and organs at risk (OAR) and the complication free tumor control probability (P(+)). As a reference for the comparative study, we included a 4D Static modality, which was a conventional approach to account for organ motion and involved the use of individualized motion margins. With reference to the 4D Static modality, the average percent decrease in lung V(20) and MLD were respectively (13.1-/+6.9) % and (11.4-/+ 5.6)% for the MPP modality, whereas for the SPP modality they were (9.4-/+6.2) % and (7.2-/+4.7) %. On the other hand, the CGI was observed to improve by 15.3-/+13.2 and 9.6-/+10.0 points for the MPP and SPP modalities, respectively while the mean GTV dose agreed to better than 3% difference across all the modalities. A similar trend was observed in the radiobiological analysis where the P(+) improved on average by (6.7-/+4.9) % and (4.1-/+3.6) % for the MPP and SPP modalities, respectively while the D computed for the OAR decreased on average by (6.2-/+3.6) % and (3.8-/+3.5) % for the MPP and SPP tracking modalities, respectively. The D calculated for the GTV for all the modalities was in agreement to better than 2% difference. In general, respiratory motion induces target displacement and deformation and therefore the complex MPP real time target tracking modality is the preferred. On the other hand, the SPP approach affords simplicity in implementation at the expense of failing to account for target deformation. Radiobiological and dosimetric analyses enabled us to investigate the consequences of failing to compensate for deformation and assess the impact if any on the clinical outcome. While it is not possible to draw any general conclusions on a small patient cohort, our study suggests that the two tracking modalities can lead to comparable clinical outcomes and as expected are advantageous when compared with the static conventional modality.
Collapse
Affiliation(s)
- T Roland
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Motomura AR, Bazalova M, Zhou H, Keall PJ, Graves EE. Investigation of the effects of treatment planning variables in small animal radiotherapy dose distributions. Med Phys 2010; 37:590-9. [PMID: 20229867 DOI: 10.1118/1.3276738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Methods used for small animal radiation treatment have yet to achieve the same dose targeting as in clinical radiation therapy. Toward understanding how to better plan small animal radiation using a system recently developed for this purpose, the authors characterized dose distributions produced from conformal radiotherapy of small animals in a microCT scanner equipped with a variable-aperture collimator. METHODS Dose distributions delivered to a cylindrical solid water phantom were simulated using a Monte Carlo algorithm. Phase-space files for 120 kVp x-ray beams and collimator widths of 1-10 mm at isocenter were generated using BEAMnrc software, and dose distributions for evenly spaced beams numbered from 5 to 80 were generated in DOSXYZnrc for a variety of targets, including centered spherical targets in a range of sizes, spherical targets offset from centered by various distances, and various ellipsoidal targets. Dose distributions were analyzed using dose volume histograms. The dose delivered to a mouse bearing a spontaneous lung tumor was also simulated, and dose volume histograms were generated for the tumor, heart, left lung, right lung, and spinal cord. RESULTS Results indicated that for centered, symmetric targets, the number of beams required to achieve a smooth dose volume histogram decreased with increased target size. Dose distributions for noncentered, symmetric targets did not exhibit any significant loss of conformality with increasing offset from the phantom center, indicating sufficient beam penetration through the phantom for targeting superficial targets from all angles. Even with variable collimator widths, targeting of asymmetric targets was found to have less conformality than that of spherical targets. Irradiation of a mouse lung tumor with multiple beam widths was found to effectively deliver dose to the tumor volume while minimizing dose to other critical structures. CONCLUSIONS Overall, this method of generating and analyzing dose distributions provides a quantitative method for developing practical guidelines for small animal radiotherapy treatment planning. Future work should address methods to improve conformality in asymmetric targets.
Collapse
Affiliation(s)
- Amy R Motomura
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
26
|
Stereotactic radiotherapy for stage I lung cancer: Current results and new developments. Cancer Radiother 2010; 14:115-8. [DOI: 10.1016/j.canrad.2009.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 11/04/2009] [Accepted: 11/19/2009] [Indexed: 12/25/2022]
|
27
|
Lim DH, Yi BY, Mirmiran A, Dhople A, Suntharalingam M, D'Souza WD. Optimal beam arrangement for stereotactic body radiation therapy delivery in lung tumors. Acta Oncol 2009; 49:219-24. [PMID: 19888895 DOI: 10.3109/02841860903302897] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the different beam arrangement and delivery techniques for stereotactic body radiation therapy (SBRT) of lung lesions using the criteria of Radiation Therapy Oncology Group (RTOG) 0236 protocol. MATERIAL AND METHODS Thirty-seven medically inoperable lung cancers were evaluated with various planning techniques including multiple coplanar multiple static beams, multiple non-coplanar static beams and arc delivery. Twelve plans were evaluated for each case, including five plans using coplanar fixed beams, six plans using non-coplanar fixed beams and one plan using arc therapy. These plans were compared using the target prescription isodose coverage, high and low dose volumes, and critical organ dose-volume limits. RESULTS The prescription isodose coverage, high dose evaluation criteria and dose to critical organs were similar among treatment delivery techniques. However, there were differences in low dose criteria, especially in the ratio of the volume of 50% isodose of the prescription dose to the volume of planning treatment volume (R(50%)). The R(50%) in plans using non-coplanar static beams was lower than other plans in 30 of 37 cases (81%). CONCLUSION Based on the dosimetric criteria outlined in RTOG 0236, the treatment technique using non-coplanar static beams showed the most preferable results for SBRT of lung lesions.
Collapse
Affiliation(s)
- Do Hoon Lim
- Department of Radiation Oncology, University of Maryland Medical System, Baltimore, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Wu WC, Chan CL, Wong YW, Cuijpers JP. A study on the influence of breathing phases in intensity-modulated radiotherapy of lung tumours using four-dimensional CT. Br J Radiol 2009; 83:252-6. [PMID: 19723769 DOI: 10.1259/bjr/33094251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During gated intensity-modulated radiotherapy (IMRT) treatment for patients with inoperable non-small cell lung cancer (NSCLC), the end-expiration (EE) phase of respiratory is more stable, whereas end-inspiration (EI) spares more normal lung tissue. This study compared the relative plan quality based on dosimetric and biological indices of the planning target volume (PTV) and organs at risk (OARs) between EI and EE in gated IMRT. 16 Stage I NSCLC patients, who were scanned by four-dimensional CT, were recruited and re-planned. An IMRT plan of a prescription dose of 60 Gy per respiratory phase was computed using the iPlan treatment planning system. The heart, spinal cord, both lungs and PTV were outlined. The tumour control probability for the PTV and normal tissue complication probability for all OARs in the EE and EI phases were nearly the same; only the normal tissue complication probability of the heart in EE was slightly lower. Conversely, the conformation number of the PTV, V20 of the left lung, V30 of both lungs, Dmax of the heart and spinal cord, V10 of the heart and D5% of the spinal cord were better in EE, whereas D(mean) of the PTV, V20 of the right lung and maximum doses of both lungs were better in EI. No differences reached statistical significance (p<0.05) except Dmax of the spinal cord (p=0.033). Overall, there was no expected clinical impact between EI and EE in the study. However, based on the practicality factor, EI is recommended for patients who can perform breath-hold; otherwise, EE is recommended.
Collapse
Affiliation(s)
- W C Wu
- Hong Kong Polytechnic University, Health Technology and Informatics, Hong Kong, China
| | | | | | | |
Collapse
|
29
|
Hoppe BS, Laser B, Kowalski AV, Fontenla SC, Pena-Greenberg E, Yorke ED, Lovelock DM, Hunt MA, Rosenzweig KE. Acute skin toxicity following stereotactic body radiation therapy for stage I non-small-cell lung cancer: who's at risk? Int J Radiat Oncol Biol Phys 2008; 72:1283-6. [PMID: 19028267 DOI: 10.1016/j.ijrobp.2008.08.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 06/24/2008] [Accepted: 08/14/2008] [Indexed: 02/02/2023]
Abstract
PURPOSE We examined the rate of acute skin toxicity within a prospectively managed database of patients treated for early-stage non-small-cell lung cancer (NSCLC) and investigated factors that might predict skin toxicity. METHODS From May 2006 through January 2008, 50 patients with Stage I NSCLC were treated at Memorial Sloan-Kettering Cancer Center with 60 Gy in three fractions or 44-48 Gy in four fractions. Patients were treated with multiple coplanar beams (3-7, median 4) with a 6 MV linac using intensity-modulated radiotherapy (IMRT) and dynamic multileaf collimation. Toxicity grading was performed and based on the National Cancer Institute Common Terminology Criteria for Adverse Effects. Factors associated with Grade 2 or higher acute skin reactions were calculated by Fisher's exact test. RESULTS After a minimum 3 months of follow-up, 19 patients (38%) developed Grade 1, 4 patients (8%) Grade 2, 2 patients (4%) Grade 3, and 1 patient Grade 4 acute skin toxicity. Factors associated with Grade 2 or higher acute skin toxicity included using only 3 beams (p = 0.0007), distance from the tumor to the posterior chest wall skin of less than 5 cm (p = 0.006), and a maximum skin dose of 50% or higher of the prescribed dose (p = 0.02). CONCLUSIONS SBRT can be associated with significant skin toxicity. One must consider the skin dose when evaluating the treatment plan and consider the bolus effect of immobilization devices.
Collapse
Affiliation(s)
- Bradford S Hoppe
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brock J, Ashley S, Bedford J, Nioutsikou E, Partridge M, Brada M. Review of Hypofractionated Small Volume Radiotherapy for Early-stage Non-small Cell Lung Cancer. Clin Oncol (R Coll Radiol) 2008; 20:666-76. [DOI: 10.1016/j.clon.2008.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 12/25/2022]
|
31
|
de Pooter JA, Méndez Romero A, Wunderink W, Storchi PRM, Heijmen BJM. Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis. Radiother Oncol 2008; 88:376-81. [PMID: 18585809 DOI: 10.1016/j.radonc.2008.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 05/29/2008] [Accepted: 06/09/2008] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate whether automatically optimized coplanar, or non-coplanar beam setups improve intensity modulated radiotherapy (IMRT) treatment plans for stereotactic body radiotherapy (SBRT) of liver tumors, compared to a reference equi-angular IMRT plan. METHODS For a group of 13 liver patients, an in-house developed beam selection algorithm (Cycle) was used for generation of 3D-CRT plans with either optimized coplanar-, or non-coplanar beam setups. These 10 field, coplanar and non-coplanar setups, and an 11 field, equi-angular coplanar reference setup were then used as input for generation of IMRT plans. For all plans, the PTV dose was maximized in an iterative procedure by increasing the prescribed PTV dose in small steps until further increase was prevented by constraint violation(s). RESULTS For optimized non-coplanar setups, D(PTV, max) increased by on average 30% (range 8-64%) compared to the corresponding reference IMRT plan. Similar increases were observed for D(PTV, 99%) and gEUD(a). For optimized coplanar setups, mean PTV dose increases were only approximately 4%. After re-scaling all plans to the clinically applied dose, optimized non-coplanar configurations resulted in the best sparing of organs at risk (healthy liver, spinal cord, bowel). CONCLUSION Compared to an equi-angular beam setup, computer optimized non-coplanar setups do result in substantial improvements in IMRT plans for SBRT of liver tumors.
Collapse
Affiliation(s)
- Jacco A de Pooter
- Department of Radiation Oncology, Erasmus MC - Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Jin JY, Ajlouni M, Chen Q, Kong FMS, Ryu S, Movsas B. Quantification of incidental dose to potential clinical target volume (CTV) under different stereotactic body radiation therapy (SBRT) techniques for non-small cell lung cancer – Tumor motion and using internal target volume (ITV) could improve dose distribution in CTV. Radiother Oncol 2007; 85:267-76. [PMID: 17905457 DOI: 10.1016/j.radonc.2007.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 12/25/2022]
Abstract
PURPOSE Clinical target volume (CTV), although present, is usually not considered during stereotactic body radiation therapy (SBRT) for non-small cell lung cancer. This study aimed to quantify the incidental dose to the potential CTV under different SBRT techniques. MATERIALS AND METHODS Ten patients with various tumor motions were included in the study. Gated-4DCT was performed for all patients. Three treatment plans were generated. Plan A was based on free breathing gross tumor volume (GTV) from a regular CT. Plan B was based on internal target volume (ITV) from gated 4DCT. Plan C was a perfect gated treatment at the exhale phase. The hypothetical CTV was represented by three CTV shells (5, 10, and 15 mm). Time-averaged dose for different respiratory phases was calculated for 18 representative points in each shell. RESULTS The minimum doses for plans A, B, and C were 84+/-20%, 94+/-3%, and 80+/-17% of the isocenter dose to the 5mm shell, 72+/-27%, 64+/-7%, and 20+/-11% to the 10mm shell, and 38+/-27%, 27+/-17%, and 6+/-7% to the 15 mm shell, respectively. The caudal and cranial ends of each shell usually had lower dose compared to the other points on the shell. Plan B had the most uniform and reasonable doses to the CTV shells, and patients with large respiratory motion had significantly higher minimum dose than patients with less motion. CONCLUSION The potential CTV may incidentally receive adequate and relatively homogeneous doses when ITV is used and the patients have large respiratory motion. However, it could be underdosed for gated treatment or for patients with little motion.
Collapse
Affiliation(s)
- Jian-Yue Jin
- Department of Radiation Oncology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Nagata Y, Matsuo Y, Takayama K, Norihisa Y, Mizowaki T, Mitsumori M, Shibuya K, Yano S, Narita Y, Hiraoka M. Current status of stereotactic body radiotherapy for lung cancer. Int J Clin Oncol 2007; 12:3-7. [PMID: 17380434 DOI: 10.1007/s10147-006-0646-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Indexed: 12/25/2022]
Abstract
Stereotactic radiotherapy (SRT) for extracranial tumors has been recently performed to treat lung and liver cancers, and has subsequently been named stereotactic body radiotherapy (SBRT). The advantages of hypofractionated radiotherapy for treating lung tumors are a shortened treatment course that requires fewer trips to the clinic than a conventional program, and the adoption of a smaller irradiated volume allowed by greater setup precision. This treatment is possible because the lung and liver are considered parallel organs at risk. The preliminary clinical results, mostly reported on lung cancer, have been very promising, including a local control rate of more than 90%, and a relatively low complication rate. The final results of a few clinical trials are awaited. SBRT may be useful for the treatment of stage I lung tumors.
Collapse
Affiliation(s)
- Yasushi Nagata
- Department of Therapeutic Radiology and Oncology, Kyoto University, Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|