1
|
El Ghalbzouri T, El Bardouni T, El Bakkali J, El Hajjaji O, Satti H, Arectout A, Hadouachi M, Yerru R. Re-evaluation of 18 F-FDG absorbed and effective dose in adult and pediatric phantoms using DoseCalcs Monte Carlo platform: a validation study. Phys Eng Sci Med 2024:10.1007/s13246-024-01492-z. [PMID: 39499400 DOI: 10.1007/s13246-024-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Positron emission tomography (PET) using18 F-FDG is a well-known modality for the diagnosis of various diseases in patients of different ages, sexes, and states of health, which implies that internal radiation dosimetry is highly desired for different phantom anatomies. In this study, we validate "DoseCalcs," a new Monte Carlo platform that combines personalized internal dosimetry calculations with Monte Carlo simulations. To achieve that, we used the specific absorbed fraction (SAF) calculated by DoseCalcs and those from ICRP publication 133 to estimate the absorbed dose per injected activity (AD/IA) and effective dose per injected activity (ED/IA) for18 F-FDG. The investigation focused on various voxelized phantoms representing different age groups, including adult male and female, and pediatric phantoms of various ages, from newborn to 15 years old. Using the DoseCalcs Monte Carlo platform, we have simulated the emission of18 F-FDG positrons based on the energy spectrum provided in ICRP publication 107. The results demonstrated the impact of anatomical differences and different organ/tissue compositions on radiation absorption, with significant variations in the AD/IA across different phantoms. Interestingly, organs/tissues near the emission source showed higher AD/IA, highlighting the anatomical dependence on the phantom. When our results were compared to established reference data, especially from ICRP128, most organs/tissues had good agreement. Still, some cases have shown differences. This shows how important it is to use accurate radionuclide data and biokinetic modeling in internal dosimetry calculations. Furthermore, we compared AD/IA and ED/IA values calculated in newborns by DoseCalcs with those derived from alternative codes, MCNP and EGSnrc. While the results generally exhibited consistency, subtle variations underscored the influence of biokinetics modeling choices and computational methodologies. Overall, this research contributes valuable insights into the precision of internal dosimetry calculations using "DoseCalcs-Gui" by providing one platform for Monte Carlo simulation and personalized internal dosimetry in nuclear medicine. The DoseCalcs platform is free for research and available for download at www.github.com/TarikEl/DoseCalcs-Gui .
Collapse
Affiliation(s)
- Tarik El Ghalbzouri
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco.
| | - Tarek El Bardouni
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Jaafar El Bakkali
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
- Royal School of Military Health Service, Rabat, Morocco
| | - Otman El Hajjaji
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Hicham Satti
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Assia Arectout
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Maryam Hadouachi
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Randa Yerru
- Radiation and Nuclear Systems Laboratory ERSN, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| |
Collapse
|
2
|
Rump A, Eder S, Hermann C, Lamkowski A, Kinoshita M, Yamamoto T, Take J, Abend M, Shinomiya N, Port M. Modeling principles of protective thyroid blocking. Int J Radiat Biol 2021; 98:831-842. [PMID: 34762000 DOI: 10.1080/09553002.2021.1987570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE In the case of a nuclear incident, the release of radioiodine must be expected. Radioiodine accumulates in the thyroid and by irradiation enhances the risk of cancer. Large doses of stable (non-radioactive) iodine may inhibit radioiodine accumulation and protect the thyroid ('thyroid blocking'). Protection is based on a competition at the active carrier site in the cellular membrane and an additional temporary inhibition of the organification of iodide (Wolff-Chaikoff effect). Alternatively, other agents like e.g. perchlorate that compete with iodide for the uptake into the thyrocytes may also confer thyroidal protection against radioiodine exposure.Biokinetic models for radioiodine mostly describe exchanges between compartments by first order kinetics. This leads to correct predictions only for low (radio)iodide concentrations. These models are not suited to describe the kinetics of iodine if administered at the dosages recommended for thyroid blocking and moreover does not permit to simulate either the protective competition mechanism at the membrane or the Wolff-Chaikoff effect. Models adapted for this purpose must be used. Such models may use a mathematical relation between the serum iodide concentration and a relative uptake suppression or a dependent rate constant determining total thyroidal radioiodine accumulation. Alternatively, the thyroidal uptake rate constant may be modeled as a function of the total iodine content of the gland relative to a saturation amount. Newer models integrate a carrier-mechanism described by Michalis-Menten kinetics in the membrane and in analogy to enzyme kinetics apply the rate law for monomolecular irreversible enzyme reactions with competing substrates to model the competition mechanism. An additional total iodide uptake block, independent on competition but limited in time, is used to simulate the Wolff-Chaikoff effect. CONCLUSION The selection of the best model depends on the issue to be studied. Most models cannot quantify the relative contributions of the competition mechanism at the membrane and the Wolff-Chaikoff effect. This makes it impossible or exceedingly difficult to simulate prolonged radioiodine exposure and the effect of repetitive administrations of stable iodine. The newer thyroid blocking models with a separate modeling of competition and Wolff-Chaikoff effect allow better quantitative mechanistic insights and offer the possibility to simulate complex radioiodine exposure scenarios and various protective dosage schemes of stable iodine relatively easily. Moreover, they permit to study the protective effects of other competitors at the membrane carrier site, like e.g. perchlorate, and to draw conclusions on their protective efficacy in comparison to stable iodine.
Collapse
Affiliation(s)
- Alexis Rump
- Institut für Radiobiologie der Bundeswehr, München, Germany
| | - Stefan Eder
- Institut für Radiobiologie der Bundeswehr, München, Germany
| | | | | | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Tetsuo Yamamoto
- NBC Countermeasure Medical Unit, Japan Ground Self Defense Force, Tokyo Japan
| | - Junya Take
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Michael Abend
- Institut für Radiobiologie der Bundeswehr, München, Germany
| | | | - Matthias Port
- Institut für Radiobiologie der Bundeswehr, München, Germany
| |
Collapse
|
3
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Wevrett J, Fenwick A, Scuffham J, Johansson L, Gear J, Schlögl S, Segbers M, Sjögreen-Gleisner K, Solný P, Lassmann M, Tipping J, Nisbet A. Inter-comparison of quantitative imaging of lutetium-177 ( 177Lu) in European hospitals. EJNMMI Phys 2018; 5:17. [PMID: 30069805 PMCID: PMC6070453 DOI: 10.1186/s40658-018-0213-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/13/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This inter-comparison exercise was performed to demonstrate the variability of quantitative SPECT/CT imaging for lutetium-177 (177Lu) in current clinical practice. Our aim was to assess the feasibility of using international inter-comparison exercises as a means to ensure consistency between clinical sites whilst enabling the sites to use their own choice of quantitative imaging protocols, specific to their systems. Dual-compartment concentric spherical sources of accurately known activity concentrations were prepared and sent to seven European clinical sites. The site staff were not aware of the true volumes or activity within the sources-they performed SPECT/CT imaging of the source, positioned within a water-filled phantom, using their own choice of parameters and reported their estimate of the activities within the source. RESULTS The volumes reported by the participants for the inner section of the source were all within 29% of the true value and within 60% of the true value for the outer section. The activities reported by the participants for the inner section of the source were all within 20% of the true value, whilst those reported for the outer section were up to 83% different to the true value. CONCLUSIONS A variety of calibration and segmentation methods were used by the participants for this exercise which demonstrated the variability of quantitative imaging across clinical sites. This paper presents a method to assess consistency between sites using different calibration and segmentation methods.
Collapse
Affiliation(s)
- Jill Wevrett
- University of Surrey, Guildford, UK.
- National Physical Laboratory, Teddington, UK.
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK.
| | | | - James Scuffham
- University of Surrey, Guildford, UK
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | | | | | | | - Marcel Segbers
- Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Pavel Solný
- Motol University Hospital, Prague, Czech Republic
| | | | - Jill Tipping
- The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew Nisbet
- University of Surrey, Guildford, UK
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| |
Collapse
|
5
|
Parach AA, Rajabi H, Askari MA. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:441-450. [PMID: 21573984 DOI: 10.1007/s00411-011-0370-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
GATE/GEANT is a Monte Carlo code dedicated to nuclear medicine that allows calculation of the dose to organs of voxel phantoms. On the other hand, MIRD is a well-developed system for estimation of the dose to human organs. In this study, results obtained from GATE/GEANT using Snyder phantom are compared to published MIRD data. For this, the mathematical Snyder phantom was discretized and converted to a digital phantom of 100 × 200 × 360 voxels. The activity was considered uniformly distributed within kidneys, liver, lungs, pancreas, spleen, and adrenals. The GATE/GEANT Monte Carlo code was used to calculate the dose to the organs of the phantom from mono-energetic photons of 10, 15, 20, 30, 50, 100, 200, 500, and 1000 keV. The dose was converted into specific absorbed fraction (SAF) and the results were compared to the corresponding published MIRD data. On average, there was a good correlation (r (2)>0.99) between the two series of data. However, the GATE/GEANT data were on average -0.16 ± 6.22% lower than the corresponding MIRD data for self-absorption. Self-absorption in the lungs was considerably higher in the MIRD compared to the GATE/GEANT data, for photon energies of 10-20 keV. As for cross-irradiation to other organs, the GATE/GEANT data were on average +1.5 ± 8.1% higher than the MIRD data, for photon energies of 50-1000 keV. For photon energies of 10-30 keV, the relative difference was +7.5 ± 67%. It turned out that the agreement between the GATE/GEANT and the MIRD data depended upon absolute SAF values and photon energy. For 10-30 keV photons, where the absolute SAF values were small, the uncertainty was high and the effect of cross-section prominent, and there was no agreement between the GATE/GEANT results and the MIRD data. However, for photons of 50-1,000 keV, the bias was negligible and the agreement was acceptable.
Collapse
Affiliation(s)
- Ali Asghar Parach
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | | | | |
Collapse
|
6
|
Segreto HRC, Oshima CTF, Franco MF, Silva MRR, Egami MI, Teixeira VPC, Segreto RA. Phosphorylation and cytoplasmic localization of MAPK p38 during apoptosis signaling in bone marrow granulocytes of mice irradiated in vivo and the role of amifostine in reducing these effects. Acta Histochem 2011; 113:300-7. [PMID: 20074782 DOI: 10.1016/j.acthis.2009.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023]
Abstract
We studied p38 phosphorylation and its intracellular localization during p53 and Puma (a p53 upregulated modulator of apoptosis) apoptotic signaling pathway in bone marrow granulocytes in mice irradiated in vivo and the role of the radioprotector amifostine in ameliorating these responses. Sixty-four C57BL mice were randomly assigned in two non-irradiated (Ami-/rad- and Ami+/rad-) and two irradiated (Ami-/rad+ and Ami+/rad+) groups. Animals received 400mg/kg of amifostine i.p. 30 min prior to a single whole body radiation dose of 7Gy. The experiments were performed using immunohistochemistry for caspase-3, cleaved caspase-3, p53, p-p53 (Ser 15), Puma, p38 and p-p38 (Thr 180/Tyr 182) protein expression. In addition transmission electron microscopy was used for ultrastructural characterization of apoptosis. Data showed that: (i) amifostine significantly reduced the number of apoptotic cells, (ii) p-p53 and Puma proteins were strongly immunostained in granulocytes after irradiation (Ami-/rad+), (iii) amifostine decreased the immunostaining of the proteins (Ami+/rad+), (iv) p38 was immunolocalized in physiological conditions in the nucleus and cytoplasm of granulocytes and neither radiation nor amifostine changed the protein immunostaining or its subcellular distribution, but influenced its activation, (v) radiation-induced p38 phosphorylation and its cytoplasmic accumulation during apoptosis signaling in granulocytes after whole body high radiation dose and amifostine markedly reduced these effects.
Collapse
Affiliation(s)
- Helena R C Segreto
- Department of Clinical and Experimental Oncology, Radiotherapy Division, Federal University of São Paulo, UNIFESP, Rua Pascal 778, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
7
|
Chaleawlert-Umpon S, Mayen V, Manotham K, Pimpha N. Preparation of iron oxide-entrapped chitosan nanoparticles for stem cell labeling. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:1515-32. [PMID: 20537238 DOI: 10.1163/092050609x12519805626031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study intended to prepare iron oxide nanoparticle-entrapped chitosan (CS) nanoparticles for stem cell labeling. The nanoparticles were synthesized by polymerizing iron oxide nanoparticle-associated methacrylic acid monomer in the presence of CS. TEM revealed that the well-defined iron oxide nanoparticles were successfully encapsulated inside the CS nanoparticles. The effect of CS at different [NH(2)]/[COOH] molar ratios on particle size, surface charge, thermal stability and magnetic properties was determined systematically. Internalization and localization of the coated nanoparticles were evaluated by atomic absorption spectrometry and confocal laser scanning microscopy. The Kusa O cell line was chosen as a stem cell model. Interestingly, the uptake of iron oxide-entrapped CS nanoparticles was remarkably enhanced under magnetization and the nanoparticles were mostly located inside cellular compartments. It can be concluded that the iron oxide-entrapped CS nanoparticles have a strong potential for stem cell labeling.
Collapse
|
8
|
Ferro-Flores G, Arteaga de Murphy C. Pharmacokinetics and dosimetry of 188 Re-pharmaceuticals. Adv Drug Deliv Rev 2008; 60:1389-401. [PMID: 18547675 DOI: 10.1016/j.addr.2008.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/16/2008] [Indexed: 01/08/2023]
Abstract
The main objective of this review is to apportion current and new insight into the biodistribution, radiopharmacokinetics, dosimetry and cell targeting of rhenium-188 labeled radiopharmaceuticals used as therapeutic drugs. The emphasis lies on the generator obtained rhenium-188, its physical, therapeutic, dosimetric and coordinated compounds. Its use in radioimmunotherapy for lymphoma and other hematological diseases with monoclonal antibodies is discussed. Radiolabeled peptides to target cell receptors are an important field in nuclear medicine and in some research facilities are already being used, especially, somatostatin, bombesin and other peptides. Small molecules labeled with 188 Re are promising as therapeutic drugs. A review about some of the non-specific targeting molecules with therapeutic or pain palliation effect such as phosphonates, lipiodol, microparticles and other interesting molecules is included. Research on the labeling of biomolecules with the versatile rhenium-188 has contributed to the development of therapeutics with favorable pharmacokinetic and dosimetric properties for cancer treatment.
Collapse
Affiliation(s)
- Guillermina Ferro-Flores
- Gerencia de Aplicaciones Nucleares en la Salud, Instituto Nacional de Investigaciones Nucleares, México
| | | |
Collapse
|