1
|
Tsui SSW, Wu VWC, Cheung JSC. Comparison of dosimetric impact of intra-fractional setup discrepancy between multiple- and single-isocenter approaches in linac-based stereotactic radiotherapy of multiple brain metastases. J Appl Clin Med Phys 2021; 23:e13484. [PMID: 34931447 PMCID: PMC8833285 DOI: 10.1002/acm2.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/23/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction Treatment of multiple brain metastases by linac‐based stereotactic radiotherapy (SRT) can employ either a multiple‐isocenter (MI) or single‐isocenter (SI) approach. The purposes of this study were to evaluate the dosimetric results of MI and SI approaches and compare the impacts of intra‐fractional setup discrepancies on the robustness of respective approaches using isocenter shifts, whether the same magnitude of translational and rotational effects could lead to a significant difference between the two approaches. Methods Twenty‐two patients with multiple brain metastases treated by linac‐based SRT were recruited. Treatment plans were computed with both the MI and SI approaches. For the MI approach, the isocenter was located at the geometric center of each planning target volumes (PTVs), whereas the isocenter of the SI approach was located midway between the PTV centroids. To simulate the intra‐fractional errors, isocenter displacements including translational and rotational shifts were hypothetically applied. Apart from the dosimetric outcomes of the two approaches, the impact of the isocenter shifts on PTVs and organs at risk (OARs) were recorded in terms of the differences (δ) in dose parameters relative to the reference plan and was then compared between the MI and SI approaches. Results Both MI and SI plans met the plan acceptance criteria. The mean Paddick conformity index (Paddick CI) and Dmax of most OARs between MI and SI plans did not show a significant difference, except that higher doses to the left optic nerve and optic chiasm were found in SI plans (p = 0.03). After the application of the isocenter shifts, δCI increased with an increase in the magnitude of the isocenter shift. When comparing between MI and SI plans, the δCIs were similar (p > 0.05) for all extents of translational shifts, but δCIs were significantly higher in SI plans after application of all rotations particularly ±1.5° and ±2.0° shifts. Despite the result that the majority of δDMax of OARs were higher in the SI plans, only the differences in the left optic nerve and chiasm showed generally consistent significance after both translational ≥±1 mm and rotational shifts of ≥±1∘. Conclusion Both MI and SI approaches could produce clinically acceptable plans. However, isocenter shifts brought dosimetric impacts to both MI and SI approaches and the effects increased with the increase of the shift magnitude. Although similar impacts were shown in plans of both approaches after translational isocenter shift, SI plans were relatively more vulnerable than MI plans to rotational shifts.
Collapse
Affiliation(s)
- Sylvia S W Tsui
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Vincent W C Wu
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Jerry S C Cheung
- Department of Clinical Oncology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
2
|
Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Sirin S, Surenkok S, Gamsiz H, Uysal B, Demiral S, Dirican B. Image-Guided Positioning in Intracranial Non-Invasive Stereotactic Radiosurgery for the Treatment of Brain Metastasis. TUMORI JOURNAL 2018; 98:630-5. [DOI: 10.1177/030089161209800514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aims and background The aim of the study was to examine the feasibility of non-invasive image-guided radiosurgery to improve patient comfort and quality of life in stereotactic radiosurgery planning and treatment of patients with brain metastasis. Precise immobilization is a rule of thumb for stereotactic radiosurgery. Non-invasive immobilization techniques have the potential of improved quality of life compared with invasive procedures. Methods and study design A total of 92 lesions from 42 patients with brain metastasis were included in the study. After immobilization with a thermoplastic mask and a bite-block unlike the invasive frame-based procedure, planning computed tomography images were acquired and fused with magnetic resonance images. After contouring, intensity-modulated stereotactic radiosurgery (IM-SRS) planning was done, and the patients were re-immobilized on the treatment couch for the therapy procedures. While patients were on the treatment couch, kilovoltage-cone beam computed tomography images were acquired to determine setup errors and achieve on-line correction and then repeated after on-line correction to confirm precise tumor localization. The patients then underwent single-fraction definitive treatment. Results For the 92 lesions treated, mean ± SD values of translational setup corrections in X (lateral), Y (longitudinal), and Z (vertical) dimensions were 0.7 ± 0.7 mm, 0.8 ± 0.7 mm, and 0.6 ± 0.5 mm, and rotational set-up corrections were 0.5 ± 1.1°, 0.06 ± 1.1°, and -0.1 ± 1.1° in X (pitch), Y (roll), and Z (yaw), respectively. The mean three-dimensional correction vector was 1.2 ± 1.1 mm. Conclusions Non-invasive image-guided radiosurgery for brain metastasis is feasible, and the non-invasive treatment approach can be routinely used in clinical practice to improve patientís quality of life.
Collapse
Affiliation(s)
- Ferrat Dincoglan
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Murat Beyzadeoglu
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Omer Sager
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Kaan Oysul
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Sait Sirin
- Neurosurgery Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Serdar Surenkok
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Hakan Gamsiz
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Bora Uysal
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Selcuk Demiral
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| | - Bahar Dirican
- Radiation Oncology Department, Gulhane Military Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Hopfgartner J, Stock M, Knäusl B, Georg D. Robustness of IMPT treatment plans with respect to inter-fractional set-up uncertainties: impact of various beam arrangements for cranial targets. Acta Oncol 2013; 52:570-9. [PMID: 23244675 DOI: 10.3109/0284186x.2012.744874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED In the current study IMPT plan robustness was evaluated with respect to inter-fractional patient positioning for various beam arrangements and two tumor indications in the cranial region. MATERIAL AND METHODS For 14 patients suffering from tumors in the cranial region [skull base (SB; n = 7) and paranasal sinus (PS; n = 7)] the CTV and OARs were delineated. A safety margin of 3 mm was applied to the CTV. A prescribed dose of 2 GyE was planned via three beam arrangements (α, β, γ). Beam arrangement α consisted of lateral opposed fields for both tumor groups while beam arrangement β was optimized according to respective tumor and OAR locations, using two beams only. Beam arrangement γ applied four beams in the SB group and three beams in the PS group. Dose distributions were recalculated subjected to virtual patient translations along the major anatomical axes. The following dosimetric indices were evaluated and compared to original plans: target coverage (TC), target dose homogeneity (HI), CTV median and average dose (D(median), D(mean)). For OARs near maximum dose and average dose (D2%, D(mean)) were evaluated. RESULTS Dose distributions were distorted after introducing shifts. In the SB group, TC and HI were significantly different for caudal, cranial and anterior shifts for all beam arrangements. For PS patients, all but right shifts differed significantly from the original plans for all beam arrangements, although clinical relevance was not reached for arrangement γ (ΔTC < 1.5%). In general, beam arrangement γ exhibited the least spread of data regarding target indices and was consequently considered the most robust. Dosimetric parameters regarding the brainstem were mostly influenced by shifts along the anterio-posterior axis. CONCLUSION For cranial IMPT, set-up uncertainties may lead to pronounced deterioration of dose distributions. According to our investigations, multi-beam arrangements were dosimetrically more robust and hence preferable over two beam arrangements.
Collapse
Affiliation(s)
- Johannes Hopfgartner
- Department of Radiooncology, Division of Medical Radiation Physics, Comprehensive Cancer Center, Medical University Vienna,
Vienna, Austria
| | - Markus Stock
- Department of Radiooncology, Division of Medical Radiation Physics, Comprehensive Cancer Center, Medical University Vienna,
Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University Vienna,
Vienna, Austria
| | - Barbara Knäusl
- Department of Radiooncology, Division of Medical Radiation Physics, Comprehensive Cancer Center, Medical University Vienna,
Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University Vienna,
Vienna, Austria
| | - Dietmar Georg
- Department of Radiooncology, Division of Medical Radiation Physics, Comprehensive Cancer Center, Medical University Vienna,
Vienna, Austria
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University Vienna,
Vienna, Austria
| |
Collapse
|
4
|
Guckenberger M, Roesch J, Baier K, Sweeney RA, Flentje M. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol 2012; 7:63. [PMID: 22531060 PMCID: PMC3441228 DOI: 10.1186/1748-717x-7-63] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. METHODS AND MATERIALS Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. RESULTS Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7 mm ± 0.5 mm and 1.2 mm ± 0.7 mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. CONCLUSIONS IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins.
Collapse
|
5
|
Gevaert T, Verellen D, Engels B, Depuydt T, Heuninckx K, Tournel K, Duchateau M, Reynders T, De Ridder M. Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery. Int J Radiat Oncol Biol Phys 2011; 83:467-74. [PMID: 21945110 DOI: 10.1016/j.ijrobp.2011.05.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch compared with 4DOF positioning for intracranial lesions and to estimate the immobilization characteristics of the BrainLAB frameless mask (BrainLAB AG, Feldkirchen, Germany), more specifically, the setup errors and intrafraction motion. METHODS AND MATERIALS We enrolled 40 patients with 66 brain metastases treated with frameless stereotactic radiosurgery and a 6DOF robotic couch. Patient positioning was performed with the BrainLAB ExacTrac stereoscopic X-ray system. Positioning results were collected before and after treatment to assess patient setup error and intrafraction motion. Existing treatment planning data were loaded and simulated for 4DOF positioning and compared with the 6DOF positioning. The clinical relevance was analyzed by means of the Paddick conformity index and the ratio of prescribed isodose volume covered with 4DOF to that obtained with the 6DOF positioning. RESULTS The mean three-dimensional setup error before 6DOF correction was 1.91 mm (SD, 1.25 mm). The rotational errors were larger in the longitudinal (mean, 0.23°; SD, 0.82°) direction compared with the lateral (mean, -0.09°; SD, 0.72°) and vertical (mean, -0.10°; SD, 1.03°) directions (p < 0.05). The mean three-dimensional intrafraction shift was 0.58 mm (SD, 0.42 mm). The mean intrafractional rotational errors were comparable for the vertical, longitudinal, and lateral directions: 0.01° (SD, 0.35°), 0.03° (SD, 0.31°), and -0.03° (SD, 0.33°), respectively. The mean conformity index decreased from 0.68 (SD, 0.08) (6DOF) to 0.59 (SD, 0.12) (4DOF) (p < 0.05). A loss of prescribed isodose coverage of 5% (SD, 0.08) was found with the 4DOF positioning (p < 0.05). Half a degree for longitudinal and lateral rotations can be identified as a threshold for coverage loss. CONCLUSIONS With a mask immobilization, patient setup error and intrafraction motions need to be evaluated and corrected for. The 6DOF patient positioning with a 6DOF robotic couch to correct translational and rotational setup errors improves target positioning with respect to treatment isocenter, which is in direct relation with the clinical outcome, compared with the 4DOF positioning.
Collapse
Affiliation(s)
- Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li S, Kleinberg LR, Rigamonti D, Wharam MD, Rashid A, Jackson J, Djajaputra D, He S, Creasey T, DeWeese TL. Clinical results of a pilot study on stereovision-guided stereotactic radiotherapy and intensity modulated radiotherapy. Technol Cancer Res Treat 2011; 9:603-17. [PMID: 21070083 DOI: 10.1177/153303461000900609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Real-time stereovision-guidance has been introduced for efficient and convenient fractionated stereotactic radiotherapy (FSR) and image-guided intensity-modulated radiation therapy (IMRT). This first pilot study is to clinically evaluate its accuracy and precision as well as impact on treatment doses. Sixty-one FSR patients wearing stereotactic masks (SMs) and nine IMRT patients wearing flexible masks (FMs), were accrued. Daily target reposition was initially based-on biplane-radiographs and then adjusted in six degrees of freedom under real-time stereovision guidance. Mean and standard deviation of the head displacements measured the accuracy and precision. Head positions during beam-on times were measured with real-time stereovisions and used for determination of delivered doses. Accuracy ± ± precision in direction with the largest errors shows improvement from 0.4 ± 2.3 mm to 0.0 ± 1.0 mm in the inferior-to-superior direction for patients wearing SM or from 0.8 ± 4.3 mm to 0.4 ± 1.7 mm in the posterior-to-anterior direction for patients wearing FM. The image-guidance increases target volume coverage by >30% for small lesions. Over half of head position errors could be removed from the stereovision-guidance. Importantly, the technique allows us to check head position during beam-on time and makes it possible for having frameless head refixation without tight masks.
Collapse
Affiliation(s)
- Shidong Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kang H, Lovelock DM, Yorke ED, Kriminski S, Lee N, Amols HI. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance. J Appl Clin Med Phys 2010. [PMID: 21330971 PMCID: PMC3065820 DOI: 10.1120/jacmp.v12i1.3270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our goal is to determine an optimized image‐guided setup by comparing setup errors determined by two‐dimensional (2D) and three‐dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D‐2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D‐3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D‐2D registration led to translational corrections from initial setup of 3.5±2.2 (range 0–8) mm. The addition of 3D‐3D registration resulted in only small incremental adjustment (0.8±1.5mm). We retrospectively calculated patient setup rotation errors using an automatic rigid‐body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in‐field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations >3° were observed. The calculated intrafractional motion with automatic registration was <3.5 mm for eight patients, and <2° for all patients. We conclude that daily manual 2D‐2D registration on radiographs reduces positioning errors for mask‐immobilized HNC patients in most cases, and is easily implemented. 3D‐3D registration adds little improvement over 2D‐2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PACS number: 87.53.Kn
Collapse
Affiliation(s)
- Hyejoo Kang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Fukuda A. Pretreatment setup verification by cone beam CT in stereotactic radiosurgery: phantom study. J Appl Clin Med Phys 2010; 11:3162. [PMID: 21081872 PMCID: PMC5720422 DOI: 10.1120/jacmp.v11i4.3162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 06/07/2010] [Accepted: 07/05/2010] [Indexed: 11/23/2022] Open
Abstract
Kilovoltage cone beam computed tomography (CBCT) imaging may be useful in verifying patient position in stereotactic radiosurgery (SRS). To evaluate its efficacy, we investigated isocenter differences in the radiation beam and CBCT with respect to the achievable setup of a conventional frame-based SRS system. A verification phantom constructed from two plastic boards and Gafchromic-EBT film (4 × 4 cm²) pricked with a pin, was scanned by simulation CT. An isocenter at the tip of pin was planned in the treatment planning system and positioned using stereotactic coordinates. Star-shot irradiation was performed to evaluate the difference between the radiation isocenter and the target (pinhole). CBCT rotation of 200° with a micro multileaf collimator (m3) was performed and measured the isocenter difference between CBCT and the target (tip of pin) by comparing relative coordinates. Data acquisition was performed 13 times on different days and differences were analyzed by calculating mean and standard deviation. The mean difference between the radiation beam and the target (pinhole) and between radiation beam and CBCT isocenter, were 0.6 ± 0.2 mm and 0.8 ± 0.1 mm, respectively. The setup accuracy of conventional stereotactic coordinates and the isocenter accuracy of CBCT complied with AAPM Report No. 54.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Department of Radiology, Shiga Medical Center for Children, Moriyama City, Shiga,
| |
Collapse
|
9
|
Chen MJ, Gu LX, Zhang WJ, Yang C, Zhao J, Shao ZY, Wang BL. Fixation, registration, and image-guided navigation using a thermoplastic facial mask in electromagnetic navigation-guided radiofrequency thermocoagulation. ACTA ACUST UNITED AC 2010; 110:e43-8. [PMID: 20692190 DOI: 10.1016/j.tripleo.2010.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/02/2010] [Accepted: 04/24/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE For fixation, registration, and image-guided navigation, the aim of this study was to evaluate a thermoplastic facial mask with plastic markers in achieving frameless stereotactic radiofrequency thermocoagulation (RFT). STUDY DESIGN A thermoplastic facial mask was remolded according to each subject's face. Six markers were placed on the surface and 6 inside. Series of 1.25-mm- and 2.5-mm-slice computerized tomography (CT) scans were made to provide radiologic data. During the phantom study, each plastic sphere inside was selected in turn as the target for frameless stereotaxy. The clinical Hartel puncture of the foramen ovale (FO) was imitated using an electromagnetic navigation system. Navigation-guided RFT was tried in 3 patients. RESULTS The mean location error was 1.29 mm (SD ± 0.39 mm). No significant difference (P > .05) was proven between 1.25-mm and 2.5-mm CT slice acquisition for the image datasets used. The FO punctures in clinical trials were successful and confirmed by CT. CONCLUSIONS Registration and fixation via a fiducial marker-based thermoplastic facial mask is accurate and feasible for use in navigation-guided RFT.
Collapse
Affiliation(s)
- Min-jie Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Bednarz G, Machtay M, Werner-Wasik M, Downes B, Bogner J, Hyslop T, Galvin J, Evans J, Curran W, Andrews D. Report on a randomized trial comparing two forms of immobilization of the head for fractionated stereotactic radiotherapy. Med Phys 2009; 36:12-7. [PMID: 19235368 DOI: 10.1118/1.3030950] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fractionated stereotactic radiotherapy (SRT) requires accurate and reproducible immobilization of the patient's head. This randomized study compared the efficacy of two commonly used forms of immobilization used for SRT. Two routinely used methods of immobilization, which differ in their approach to reproduce the head position from day to day, are the Gill-Thomas-Cosman (GTC) frame and the BrainLab thermoplastic mask. The GTC frame fixates on the patient's upper dentition and thus is in direct mechanical contact with the cranium. The BrainLab mask is a two-part masking system custom fitted to the front and back of the patient's head. After patients signed an IRB-approved informed consent form, eligible patients were randomized to either GTC frame or mask for their course of SRT. Patients were treated as per standard procedure; however, prior to each treatment a set of digital kilovolt images (ExacTrac, BrainLabAB, Germany) was taken. These images were fused with reference digitally reconstructed radiographs obtained from treatment planning CT to yield lateral, longitudinal, and vertical deviations of isocenter and head rotations about respective axes. The primary end point of the study was to compare the two systems with respect to mean and standard deviations using the distance to isocenter measure. A total of 84 patients were enrolled (69 patients evaluable with detailed positioning data). A mixed-effect linear regression and two-tiled t test were used to compare the distance measure for both the systems. There was a statistically significant (p < 0.001) difference between mean distances for these systems, suggesting that the GTC frame was more accurate. The mean 3D displacement and standard deviations were 3.17+1.95 mm for mask and 2.00+1.04 mm for frame. Both immobilization techniques were highly effective, but the GTC frame was more accurate. To optimize the accuracy of SRT, daily kilovolt image guidance is recommended with either immobilization system.
Collapse
Affiliation(s)
- Greg Bednarz
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Clinical Experiences With Onboard Imager KV Images for Linear Accelerator–Based Stereotactic Radiosurgery and Radiotherapy Setup. Int J Radiat Oncol Biol Phys 2009; 73:556-61. [DOI: 10.1016/j.ijrobp.2008.09.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022]
|
12
|
Girvigian MR, Chen JCT, Rahimian J, Miller MJ, Tome M. Comparison of early complications for patients with convexity and parasagittal meningiomas treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Neurosurgery 2008; 62:A19-27; discussion A27-8. [PMID: 18580776 DOI: 10.1227/01.neu.0000325933.34154.cb] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Patients with convexity and parasagittal (CPS) meningiomas treated with stereotactic radiosurgery (SRS) have been shown to be at risk for posttreatment symptomatic peritumoral edema (SPTE). We sought to analyze the pattern of this complication and compare it with the SPTE experienced in our patients treated with fractionated stereotactic radiotherapy. METHODS From January 2003 to October 2005, 32 patients with CPS meningiomas were treated. Thirty patients with a total of 38 lesions had sufficient follow-up for analysis. Group A (n = 14) patients were treated with single fraction SRS, and Group B (n = 16) patients were treated with fractionated stereotactic radiotherapy. The lesion volume was different between the two groups with the Group B median volume (7.46 cm) being larger than that for Group A (2.84 cm) (P = 0.0008). Conversely age, follow-up, sex, prior surgical events, number of lesions, tumor location, and atypical histology did not differ between these groups. The median marginal dose for patients in Group A was 14 Gy (range, 12.5-18 Gy). For Group B, six patients received a median marginal dose of 50.4 Gy in 28 fractions, and 10 patients received a marginal dose of 25 Gy in five fractions. RESULTS Seven of the 30 patients treated in this series developed posttreatment SPTE. The incidence of SPTE in Group A (six of 14 patients) was significantly higher than that in Group B (one of 16 patients) (P = 0.031). The median time to onset of SPTE in the six patients in Group A was 4 months. In Group B, one patient had onset of SPTE in 3 months. On univariate analysis, larger tumor volume (P = 0.0014) and tumor margin dose >14 Gy in patients undergoing SRS (P = 0.031) was associated with onset of SPTE. Age, previous surgery, and tumor location were not associated with onset of SPTE. CONCLUSION Despite larger lesion volumes, fractionated stereotactic radiotherapy is associated with less risk of posttreatment SPTE than SRS for patients with CPS meningiomas in our series. For patients treated with SRS, smaller volume and dose <14 Gy seems to be safe. Longer follow-up will be required to compare late complications and tumor control rates in these patients.
Collapse
Affiliation(s)
- Michael R Girvigian
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center and the Southern California Permanente Medical Group, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
13
|
Masi L, Casamassima F, Polli C, Menichelli C, Bonucci I, Cavedon C. Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up. Int J Radiat Oncol Biol Phys 2008; 71:926-33. [PMID: 18514784 DOI: 10.1016/j.ijrobp.2008.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/01/2008] [Accepted: 03/03/2008] [Indexed: 11/17/2022]
Abstract
PURPOSE An analysis is performed of the setup errors measured by a kV cone beam computed tomography (CBCT) for intracranial stereotactic radiotherapy (SRT) patients immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. We evaluated the overall positioning precision and accuracy of the immobilizing and localizing systems. The potential of image-guided radiotherapy to replace stereotactic methods is discussed. METHODS AND MATERIALS Fifty-seven patients received brain SRT. After a frame-guided setup, before each fraction (131 fractions), a CBCT was acquired and the detected displacements corrected online. Translational and rotational errors were analyzed calculating overall mean and standard deviation. A separate analysis was performed for bite-block (in conjunction with mask) and for simple thermoplastic mask. Interobserver variability for CBCT three-dimensional registration was assessed. The residual error after correction and intrafractional motion were calculated. RESULTS The mean module of the three-dimensional displacement vector was 3.0 +/- 1.4 mm. Setup errors for bite block and mask were smaller (2.9 +/- 1.3 mm) than those for thermoplastic mask alone (3.2 +/- 1.5 mm), but statistical significance was not reached (p = 0.15). Interobserver variability was negligible. The maximum margin calculated for residual errors and intra fraction motion was small but not negligible (1.57 mm). CONCLUSIONS Considering the detected setup errors, daily image guidance is essential for the efficacy of SRT treatments when mask immobilization is used, and even when a bite-block is used in conjunction. The frame setup is still used as a starting point for the opportunity of rotational corrections. Residual margins after on-line corrections must be evaluated.
Collapse
Affiliation(s)
- Laura Masi
- Medical Physics Department, Casa di Cura S Chiara, Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Guckenberger M, Baier K, Guenther I, Richter A, Wilbert J, Sauer O, Vordermark D, Flentje M. Reliability of the Bony Anatomy in Image-Guided Stereotactic Radiotherapy of Brain Metastases. Int J Radiat Oncol Biol Phys 2007; 69:294-301. [PMID: 17707284 DOI: 10.1016/j.ijrobp.2007.05.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate whether the position of brain metastases remains stable between planning and treatment in cranial stereotactic radiotherapy (SRT). METHODS AND MATERIALS Eighteen patients with 20 brain metastases were treated with single-fraction (17 lesions) or hypofractionated (3 lesions) image-guided SRT. Median time interval between planning and treatment was 8 days. Before treatment a cone-beam CT (CBCT) and a conventional CT after application of i.v. contrast were acquired. Setup errors using automatic bone registration (CBCT) and manual soft-tissue registration of the brain metastases (conventional CT) were compared. RESULTS Tumor size was not significantly different between planning and treatment. The three-dimensional setup error (mean +/- SD) was 4.0 +/- 2.1 mm and 3.5 +/- 2.2 mm according to the bony anatomy and the lesion itself, respectively. A highly significant correlation between automatic bone match and soft-tissue registration was seen in all three directions (r >/= 0.88). The three-dimensional distance between the isocenter according to bone match and soft-tissue registration was 1.7 +/- 0.7 mm, maximum 2.8 mm. Treatment of intracranial pressure with steroids did not influence the position of the lesion relative to the bony anatomy. CONCLUSION With a time interval of approximately 1 week between planning and treatment, the bony anatomy of the skull proved to be an excellent surrogate for the target position in image-guided SRT.
Collapse
Affiliation(s)
- Matthias Guckenberger
- Department of Radiation Oncology, Julius-Maximilians University, Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|