1
|
Ishikawa H, Hiroshima Y, Kanematsu N, Inaniwa T, Shirai T, Imai R, Suzuki H, Akakura K, Wakatsuki M, Ichikawa T, Tsuji H. Carbon-ion radiotherapy for urological cancers. Int J Urol 2022; 29:1109-1119. [PMID: 35692124 PMCID: PMC9796467 DOI: 10.1111/iju.14950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
Carbon-ions are charged particles with a high linear energy transfer, and therefore, they make a better dose distribution with greater biological effects on the tumors compared with photons and protons. Since prostate cancer, renal cell carcinoma, and retroperitoneal sarcomas such as liposarcoma and leiomyosarcoma are known to be radioresistant tumors, carbon-ion radiotherapy, which provides the advantageous radiobiological properties such as an increasing relative biological effectiveness toward the Bragg peak, a reduced oxygen enhancement ratio, and a reduced dependence on fractionation and cell-cycle stage, has been tested for these urological tumors at the National Institute for Radiological Sciences since 1994. To promote carbon-ion radiotherapy as a standard cancer therapy, the Japan Carbon-ion Radiation Oncology Study Group was established in 2015 to create a registry of all treated patients and conduct multi-institutional prospective studies in cooperation with all the Japanese institutes. Based on accumulating evidence of the efficacy and feasibility of carbon-ion therapy for prostate cancer and retroperitoneal sarcoma, it is now covered by the Japanese health insurance system. On the other hand, carbon-ion radiotherapy for renal cell cancer is not still covered by the insurance system, although the two previous studies showed the efficacy. In this review, we introduce the characteristics, clinical outcomes, and perspectives of carbon-ion radiotherapy and our efforts to disseminate the use of this new technology worldwide.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yuichi Hiroshima
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Nobuyuki Kanematsu
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Taku Inaniwa
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Toshiyuki Shirai
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Reiko Imai
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Hiroyoshi Suzuki
- Department of UrologyToho University Sakura Medical CenterChibaJapan
| | - Koichiro Akakura
- Department of UrologyJapan Community Health‐care Organization Tokyo Shinjuku Medical CenterTokyoJapan
| | - Masaru Wakatsuki
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Tomohiko Ichikawa
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Hiroshi Tsuji
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
2
|
Chen X, Yu Q, Li P, Fu S. Landscape of Carbon Ion Radiotherapy in Prostate Cancer: Clinical Application and Translational Research. Front Oncol 2021; 11:760752. [PMID: 34804961 PMCID: PMC8602827 DOI: 10.3389/fonc.2021.760752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Carbon ion radiotherapy (CIRT) is a useful and advanced technique for prostate cancer. This study sought to investigate the clinical efficacy and translational research for prostate cancer with carbon ion radiotherapy. We integrated the data from published articles, clinical trials websites, and our data. The efficacy of CIRT for prostate cancer was assessed in terms of overall survival, biochemical recurrence-free survival, and toxicity response. Up to now, clinical treatment of carbon ion radiotherapy has been carried in only five countries. We found that carbon ion radiotherapy induced little genitourinary and gastrointestinal toxicity when used for prostate cancer treatment. To some extent, it led to improved outcomes in overall survival, biochemical recurrence-free survival than conventional radiotherapy, especially for high-risk prostate cancer. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients, and quality of life assessment indicated that CIRT affected patients to a lesser extent. Potential biomarkers from our omics-based study could be used to predict the efficacy of prostate cancer with CIRT. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients. The omics-based translational research may provide insights into individualized therapy.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Proton & Heavy Ion Medical Center, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, Shanghai Concord Cancer Center, Shanghai, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Proton & Heavy Ion Medical Center, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, Shanghai Concord Cancer Center, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| |
Collapse
|
3
|
Eichkorn T, König L, Held T, Naumann P, Harrabi S, Ellerbrock M, Herfarth K, Haberer T, Debus J. Carbon Ion Radiation Therapy: One Decade of Research and Clinical Experience at Heidelberg Ion Beam Therapy Center. Int J Radiat Oncol Biol Phys 2021; 111:597-609. [PMID: 34560023 DOI: 10.1016/j.ijrobp.2021.05.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany.
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany; Clinical Cooperation Unit, Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; German Cancer Consortium, Partner Site Heidelberg, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
Wang X, Chen X, Li G, Han X, Gao T, Liu W, Tang X. Application of Carbon Ion and Its Sensitizing Agent in Cancer Therapy: A Systematic Review. Front Oncol 2021; 11:708724. [PMID: 34290989 PMCID: PMC8287631 DOI: 10.3389/fonc.2021.708724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon ion radiation therapy (CIRT) is the most advanced radiation therapy (RT) available and offers new opportunities to improve cancer treatment and research. CIRT has a unique physical and biological advantage that allow them to kill tumor cells more accurately and intensively. So far, CIRT has been used in almost all types of malignant tumors, and showed good feasibility, safety and acceptable toxicity, indicating that CIRT has a wide range of development and application prospects. In addition, in order to improve the biological effect of CIRT, scientists are also trying to investigate related sensitizing agents to enhance the killing ability of tumor cells, which has attracted extensive attention. In this review, we tried to systematically review the rationale, advantages and problems, the clinical applications and the sensitizing agents of the CIRT. At the same time, the prospects of the CIRT in were prospected. We hope that this review will help researchers interested in CIRT, sensitizing agents, and radiotherapy to understand their magic more systematically and faster, and provide data reference and support for bioanalysis, clinical medicine, radiotherapy, heavy ion therapy, and nanoparticle diagnostics.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaojun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Guangfei Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Weifeng Liu
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Takakusagi Y, Katoh H, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Kamada T. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat Oncol 2020; 15:127. [PMID: 32460889 PMCID: PMC7254700 DOI: 10.1186/s13014-020-01575-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) for prostate cancer was initiated at Kanagawa Cancer Center in 2015. The present study analyzed the preliminary clinical outcomes of CIRT for prostate cancer. METHODS The clinical outcomes of 253 patients with prostate cancer who were treated with CIRT delivered using the spot scanning method between December 2015 and December 2017 were retrospectively analyzed. The irradiation dose was set at 51.6 Gy (relative biological effectiveness) delivered in 12 fractions over 3 weeks. Biochemical relapse was defined using the Phoenix definition. Toxicities were assessed according to CTCAE version 4.0. RESULTS The median patient age was 70 (47-86) years. The median follow-up duration was 35.3 (4.1-52.9) months. According to the D'Amico classification system, 8, 88, and 157 patients were classified as having low, intermediate, and high risks, respectively. Androgen deprivation therapy was administered in 244 patients. The biochemical relapse-free rate in the low-, intermediate-, and high-risk groups at 3 years was 87.5, 88.0, and 97.5%, respectively (P = 0.036). Grade 2 acute urinary toxicity was observed in 12 (4.7%) patients. Grade 2 acute rectal toxicity was not observed. Grade 2 late urinary toxicity and grade 2 late rectal toxicity were observed in 17 (6.7%) and 3 patients (1.2%), respectively. Previous transurethral resection of the prostate was significantly associated with late grade 2 toxicity in univariate analysis. The predictive factor for late rectal toxicity was not detected. CONCLUSION The present study demonstrated that CIRT using the spot scanning method for prostate cancer produces favorable outcomes.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| |
Collapse
|
6
|
Zhang Y, Li P, Yu Q, Wu S, Chen X, Zhang Q, Fu S. Preliminary exploration of clinical factors affecting acute toxicity and quality of life after carbon ion therapy for prostate cancer. Radiat Oncol 2019; 14:94. [PMID: 31164172 PMCID: PMC6549341 DOI: 10.1186/s13014-019-1303-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose To assess toxicity and quality-of-life (QOL) after carbon ion radiotherapy (CIRT) at the Shanghai Proton and Heavy Ion Center (SPHIC) and identify clinical factors that correlate with urinary, bowel and sexual function. Methods Sixty-four patients with localized prostate cancer admitted from July 2015 to January 2018 underwent CIRT. At baseline and 5 time-points after radiotherapy, we assessed patients’ QOL using the 26-item edition of the Expanded Prostate Cancer Index-Composite (EPIC-26) Chinese version. Logistic regression was performed to identify clinical factors associated with acute genitourinary (GU) toxicity and relative QOL. Results By the end of CIRT, urinary irritation/obstruction temporarily declined (− 7.92 ± 1.76, p < .001). For urinary incontinence, bowel and sexual QOL, the scores remained stable at 2-year follow-up. The occurrences of acute Grade 1 and 2 GU toxicity were 20.3 and 10.9%, respectively, and of late Grade 1 and 2 GU toxicity were 3.1 and 1.6%, respectively. No acute or late gastrointestinal (GI) toxicity occurred. Transurethral resection of the prostate (TURP) was a risk factor that predicted a decline in urinary related QOL, and age made a difference to bowel-related QOL. For sexual QOL, castration status was a remarkable risk factor. An international prostate symptom score (IPSS) ≥8 increased the risk of Grade 1–2 acute GU toxicity 5.3-fold. Conclusion Patients with prostate cancer had favorable QOL after CIRT. IPSS ≥8 was a risk factor to acute GU toxicity, and TURP predicted a decline in urinary QOL. Age was related to bowel QOL, and castration status was associated with sexual QOL. Trial registration Carbon Ion Radiotherapy for the Treatment of Localized Prostate Cancer, NCT02739659. Registered April 15, 2016.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Fudan University Cancer Hospital, No.4365 Kang Xin Road, Shanghai, 201321, China.,Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, 201321, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Shanghai, 201321, China.,Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, 201321, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Cancer Hospital, Shanghai, 200020, China
| | - Shuang Wu
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Fudan University Cancer Hospital, No.4365 Kang Xin Road, Shanghai, 201321, China.,Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, 201321, China
| | - Xue Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Fudan University Cancer Hospital, No.4365 Kang Xin Road, Shanghai, 201321, China.,Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, 201321, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Shanghai, 201321, China. .,Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, 201321, China.
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Fudan University Cancer Hospital, No.4365 Kang Xin Road, Shanghai, 201321, China. .,Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, 201321, China. .,Key Laboratory of Nuclear Physics and lon-Beam Application (MOE), Fudan University, Shanghai, 200433, China. .,Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, 200020, China.
| |
Collapse
|
7
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
8
|
Wakatsuki M, Kato S, Ohno T, Kiyohara H, Karasawa K, Tamaki T, Ando K, Irie D, Shiba S, Tsujii H, Nakano T, Kamada T, Shozu M. Difference in distant failure site between locally advanced squamous cell carcinoma and adenocarcinoma of the uterine cervix after C-ion RT. JOURNAL OF RADIATION RESEARCH 2015; 56:523-8. [PMID: 25589503 PMCID: PMC4426912 DOI: 10.1093/jrr/rru117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We investigated the first site of distant failure after carbon ion radiotherapy (C-ion RT) for locally advanced cervical cancer in three clinical trials. A total of 91 cases were enrolled in the three trials (Protocol 9702, 9704 and 9902). Histologically, 36 cases had squamous cell carcinoma (SqCC) and 55 cases had adenocarcinoma (AC), including 13 with adenosquamous cell carcinoma. The number of cases with Stage IIB, IIIB and IVA disease was 21, 59 and 11, respectively. Of the 91 cases, 42 had positive pelvic lymph nodes (PLNs). The median tumor size was 6.0 cm (range, 3.0–12.0 cm). The median follow-up duration for all cases was 40 months (range, 7–181 months). A total of 40 cases developed distant failure as the first site of failure: 13 of 36 (36.1%) SqCC cases had distant failure, with 9 of them with para-aortic lymph node (PALN) failure; 27 of 55 (44.0%) AC cases had distant failure, and 23 of them had distant failure excluding PALN metastasis. Distant failure rates of SqCC cases who had positive and negative PLNs before C-ion RT were 61.1% and 11.1%, respectively (P = 0.0045). Those of AC cases were 54.2% and 45.2%, respectively (P = 0.507). In conclusion, there were high rates of distant failure after C-ion RT in AC cases regardless of PLN status, and there were high rates of distant failure after C-ion RT, especially PALN failure, in SqCC cases with positive PLNs.
Collapse
Affiliation(s)
- Masaru Wakatsuki
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Corresponding author. Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan. Tel: +81-43-206-3360; Fax: +81-43-256-6506;
| | - Shingo Kato
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Kiyohara
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kumiko Karasawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ken Ando
- Department of Radiation Oncology, Gunma Prefectural Cancer Center, Ota, Gunma, Japan
| | - Daisuke Irie
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hirohiko Tsujii
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
You SH, Lee JY, Lee CG. Toxicity of tomotherapy-based simultaneous integrated boost in whole-pelvis radiation for prostate cancer. Yonsei Med J 2015; 56:510-8. [PMID: 25684003 PMCID: PMC4329366 DOI: 10.3349/ymj.2015.56.2.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The validity of tomotherapy-based simultaneous integrated boost (TOMOSIB) was assessed in terms of acute intestinal/urinary toxicity by comparing with 3-dimensional conformal radiotherapy (3DCRT) in cases of whole-pelvis radiation therapy (WPRT) for prostate cancer. MATERIALS AND METHODS Thirty-eight consecutive patients who underwent curative WPRT were retrospectively reviewed. Twenty six (68.4%) received 3DCRT and the others (31.6%) were treated with TOMOSIB. A local boost to the prostate circumferential area was added to WPRT sequentially for 3DCRT and concomitantly for TOMOSIB. The total median prostate or prostatic bed dose was 64.8 Gy including median 45.0 Gy of WPRT. Acute toxicities were assessed according to RTOG criteria. RESULTS Overall intestinal toxicity was lower in TOMOSIB group than 3DCRT group (p=0.008). When it was divided into rectum and non-rectum intestine (NRI), TOMOSIB showed borderline superiority only in NRI toxicity (p=0.047). For the urinary toxicity, there was no significant difference between two groups (p=0.796). On dosimetric analysis for the rectum and bladder, dose delivered to 80% (p<0.001) and volume receiving 25-40 Gy (p<0.001) were remarkably higher in 3DCRT. For the NRI, only maximum dose showed significant results between two groups (p<0.001). CONCLUSION Intestinal toxicity should be verified with more detailed anatomic categorization such as rectum and NRI. TOMOSIB could not reduce urinary toxicity because of inevitably high dose exposure to the prostatic urethra. Current dosimetry system did not properly reflect intestinal/urinary toxicity, and suitable dosimetric guidelines are needed in TOMOSIB.
Collapse
Affiliation(s)
- Sei Hwan You
- Department of Radiation Oncology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong Young Lee
- Department of Radiation Oncology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Chang Geol Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Habrand JL, Datchary J, Alapetite C, Bolle S, Calugaru V, Feuvret L, Helfre S, Stefan D, Delacroix S, Demarzi L, Dendale R. Évolution des indications cliniques en hadronthérapie 2008–2012. Cancer Radiother 2013; 17:400-6. [DOI: 10.1016/j.canrad.2013.07.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/16/2013] [Indexed: 12/25/2022]
|
11
|
Ishikawa H, Tsuji H, Kamada T, Akakura K, Suzuki H, Shimazaki J, Tsujii H. Carbon-ion radiation therapy for prostate cancer. Int J Urol 2012; 19:296-305. [PMID: 22320843 DOI: 10.1111/j.1442-2042.2012.02961.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In 1994, carbon-ion radiotherapy was started at the National Institute of Radiological Sciences using the Heavy-Ion Medical Accelerator in Chiba. Between June 1995 and March 2000, two phase I/II dose escalation studies (protocols 9402 and 9703) of hypofractionated carbon-ion radiotherapy for both early- and advance-stage prostate cancer patients had been carried out to establish radiotherapy technique and to determine the optimal radiation dose. To validate the feasibility and efficacy of hypofractionated carbon-ion radiotherapy, a phase II study (9904) was initiated in April 2000 using the shrinking field technique and the recommended dose fractionation (66 gray equivalents in 20 fractions over 5 weeks) obtained from the phase I/II studies, and was successfully completed in October 2003. The data from 175 patients in the phase II study showed the importance of an appropriate use of androgen deprivation therapy according to tumor risk group. Since November 2003, carbon-ion radiotherapy for prostate cancer was approved as "Highly Advanced Medical Technology" from the Ministry of Health, Labor, and Welfare, and since then approximately 1100 patients have received carbon-ion radiotherapy as of July 2011. In this review, we introduce our steps thorough three clinical trials carried out at National Institute of Radiological Sciences, and show the updated data of carbon-ion radiotherapy obtained from approximately 1000 prostate cancer patients. In addition, our recent challenge and future direction will be also described.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Radiation Oncology, Tsukuba University Faculty of Medicine, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jensen AD, Münter MW, Debus J. Review of clinical experience with ion beam radiotherapy. Br J Radiol 2011; 84 Spec No 1:S35-47. [PMID: 21427183 DOI: 10.1259/bjr/71511359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The article describes both the early development of oncology as a core discipline at the University of Heidelberg Hospital and the first steps towards ion beam treatment, from the pilot project carried out in co-operation with the Gesellschaft für Schwerionenforschung Darmstadt to the initial start-up of clinical service at the Heidelberg Heavy Ion Centre (HIT). We present an overview, based on data published in the literature, of the available clinical evidence relating the use of ion beam therapy to treat major indications in active particle centres. A rationale for the use of particle therapy in each of these indications is given. In view of the limited availability of data, we discuss the necessity to conduct clinical trials. We also look forward towards the next activities to be undertaken at the HIT.
Collapse
Affiliation(s)
- A D Jensen
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
13
|
Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta Rev Cancer 2009; 1796:216-29. [PMID: 19682551 DOI: 10.1016/j.bbcan.2009.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/20/2022]
Abstract
High-energy protons and carbon ions exhibit an inverse dose profile allowing for increased energy deposition with penetration depth. Additionally, heavier ions like carbon beams have the advantage of a markedly increased biological effectiveness characterized by enhanced ionization density in the individual tracks of the heavy particles, where DNA damage becomes clustered and therefore more difficult to repair, but is restricted to the end of their range. These superior biophysical and biological profiles of particle beams over conventional radiotherapy permit more precise dose localization and make them highly attractive for treating anatomically complex and radioresistant malignant tumors but without increasing the severe side effects in the normal tissue. More than half a century since Wilson proposed their use in cancer therapy, the effects of particle beams have been extensively investigated and the biological complexity of particle beam irradiation begins to unfold itself. The goal of this review is to provide an as comprehensive and up-to-date summary as possible of the different radiobiological aspects of particle beams for effective application in cancer treatment.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Medical Faculty of Philipps University, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|