1
|
Habibi MA, Shad N, Mirjnani MS, Fasihi S, Sadeghi S, Karami S, Ahmadvand MH, Delbari P, Zare AH, Zare AH, Alavi SAN. Is add-on Bevacizumab therapy to Temozolomide and radiotherapy associated with clinical utility for newly diagnosed Glioblastoma? A systematic review and meta-analysis. Neurosurg Rev 2024; 47:445. [PMID: 39162874 DOI: 10.1007/s10143-024-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Bevacizumab, temozolomide (TMZ), and radiotherapy are three therapeutic methods, but the combination of them as a new approach for the treatment of newly diagnosed high-grade gliomas (HGGs) is still under investigation. Therefore, this study aims to evaluate the safety, efficacy, and clinical utility of this treatment approach for patients with glioblastoma (GBM). PubMed/Medline, Scopus, Embase, and Web of Science were systematically reviewed from inception to 24 August 2023. Relevant studies evaluating the therapeutic effect of adding Bevacizumab to TMZ-based chemotherapy and radiation therapy were enrolled. All statistical analysis was performed using the "meta" package of R. A total of 21 studies were included in this study. Our meta-analysis found that adding bevacizumab to standard therapy improved progression-free survival (PFS) in patients with newly diagnosed GBM. The pooled 6-month PFS rate was significantly higher with bevacizumab (79% vs. 56%, odds ratio 3.17). Overall survival (OS) showed modest improvements, with 2-year OS rates of 39% vs. 20% favoring bevacizumab. Radiological response rates varied, with a pooled overall response rate of 44% for bevacizumab-treated patients. The complete response rate was 16%, partial response 32%, and progressive disease 25%. Adverse events occurred in 62% of bevacizumab-treated patients. Common complications included fatigue, thrombocytopenia, and thromboembolic events. When added to standard therapy, bevacizumab demonstrates modest improvements in PFS and OS for newly diagnosedGBM. While it shows promise in short-term outcomes and radiological responses, long-term survival benefits remain limited. The risk of adverse events, particularly CNS hemorrhage, necessitates careful patient selection. These findings suggest that bevacizumab may have a role in treating high-grade gliomas, but its use should be individualized based on patient characteristics and risk-benefit assessment.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Shad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sara Fasihi
- Department of Anesthesiology, Qom University of Medical Sciences, Qom, Iran
| | - Sara Sadeghi
- School of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pouria Delbari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Zare
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hessam Zare
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Naseri Alavi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Kang X, Chen F, Yang SB, Wang YL, Qian ZH, Li Y, Lin H, Li P, Peng YC, Wang XM, Li WB. Intrathecal methotrexate in combination with systemic chemotherapy in glioblastoma patients with leptomeningeal dissemination: A retrospective analysis. World J Clin Cases 2022; 10:5595-5605. [PMID: 35979103 PMCID: PMC9258364 DOI: 10.12998/wjcc.v10.i17.5595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is one of the most common and aggressive primary malignant brain tumors with severe symptoms and a poor prognosis. Leptomeningeal dissemination (LMD) is a serious complication of GBM that often results in dire outcomes. There is currently no effective treatment.
AIM To estimate the clinical outcomes of combination therapy in GBM patients with LMD
METHODS A retrospective analysis was conducted using data collected from GBM patients diagnosed with LMD from January 2012 to December 2019 at our institution. All these patients had received at least one cycle of a combination therapy consisting of intrathecal methotrexate (MTX) and systemic chemotherapy. Clinical and pathological data were analyzed to explore the outcome of GBM patients with LMD and to determine the most effective treatment.
RESULTS Twenty-six patients were enrolled in this study. The median time from GBM diagnosis to LMD development was 9.3 mo (range: 2-59 mo). The median overall survival of LMD patients from diagnosis to after receiving systemic chemotherapy in combination with intrathecal MTX was 10.5 mo (range: 2-59 mo). In the Cox univariate analysis, gross resection of tumor (P = 0.022), Karnofsky performance status (KPS) > 60 (P = 0.002), and Ommaya reservoir implant (P < 0.001) were correlated with survival. Multivariate analysis showed that KPS > 60 (P = 0.037) and Ommaya reservoir implant (P = 0.014) were positive factors correlated with survival. Myelotoxicity and gastrointestinal reactions were the common toxicities of this combination therapy. According to Common Terminology Criteria of Adverse Events 4.03, most of the patients presented with toxicity less than grade 3.
CONCLUSION Intrathecal MTX administration combined with systemic chemotherapy is a potentially effective treatment for patients with GBM and LMD, with mild treatment-related side effects.
Collapse
Affiliation(s)
- Xun Kang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shou-Bo Yang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ya-Li Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zeng-Hui Qian
- Department of Neurosurgery, Beijing Tiantan Hsopital, Capital Medical University, Beijing 100070, China
| | - Yan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hao Lin
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Parker Li
- Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yi-Chen Peng
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiao-Min Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wen-Bin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
3
|
McCrea HJ, Ivanidze J, O'Connor A, Hersh EH, Boockvar JA, Gobin YP, Knopman J, Greenfield JP. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr 2021; 28:371-379. [PMID: 34359048 DOI: 10.3171/2021.3.peds20738] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Delivery of drugs intraarterially to brain tumors has been demonstrated in adults. In this study, the authors initiated a phase I trial of superselective intraarterial cerebral infusion (SIACI) of bevacizumab and cetuximab in pediatric patients with refractory high-grade glioma (diffuse intrinsic pontine glioma [DIPG] and glioblastoma) to determine the safety and efficacy in this population. METHODS SIACI was used to deliver mannitol (12.5 ml of 20% mannitol) to disrupt the blood-brain barrier (BBB), followed by bevacizumab (15 mg/kg) and cetuximab (200 mg/m2) to target VEGF and EGFR, respectively. Patients with brainstem tumors had a balloon inflated in the distal basilar artery during mannitol infusion. RESULTS Thirteen patients were treated (10 with DIPG and 3 with high-grade glioma). Toxicities included grade I epistaxis (2 patients) and grade I rash (2 patients). There were no dose-limiting toxicities. Of the 10 symptomatic patients, 6 exhibited subjective improvement; 92% showed decreased enhancement on day 1 posttreatment MRI. Of 10 patients who underwent MRI at 1 month, 5 had progressive disease and 5 had stable disease on FLAIR, whereas contrast-enhanced scans demonstrated progressive disease in 4 patients, stable disease in 2, partial response in 2, and complete response in 1. The mean overall survival for the 10 DIPG patients was 519 days (17.3 months), with a mean posttreatment survival of 214.8 days (7.2 months). CONCLUSIONS SIACI of bevacizumab and cetuximab was well tolerated in all 13 children. The authors' results demonstrate safety of this method and warrant further study to determine efficacy. As molecular targets are clarified, novel means of bypassing the BBB, such as intraarterial therapy and convection-enhanced delivery, become more critical. Clinical trial registration no.: NCT01884740 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Heather J McCrea
- 1Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jana Ivanidze
- 2Department of Radiology, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Ashley O'Connor
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Eliza H Hersh
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - John A Boockvar
- 4Department of Neurosurgery, Lenox Hill Hospital/Hofstra Northwell School of Medicine, New York, New York
| | - Y Pierre Gobin
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Jared Knopman
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Jeffrey P Greenfield
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| |
Collapse
|
4
|
Zhang J, Winters K, Kiser K, Baboli M, Kim SG. Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI. PLoS One 2020; 15:e0234520. [PMID: 32520950 PMCID: PMC7286489 DOI: 10.1371/journal.pone.0234520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/26/2020] [Indexed: 12/01/2022] Open
Abstract
Purpose To investigate the validity of contrast kinetic parameter estimates from Active Contrast Encoding (ACE)-MRI against those from conventional Dynamic Contrast-Enhanced (DCE)-MRI for evaluation of tumor treatment response in mouse tumor models. Methods The ACE-MRI method that incorporates measurement of T1 and B1 into the enhancement curve washout region, was implemented on a 7T MRI scanner to measure tracer kinetic model parameters of 4T1 and GL261 tumors with treatment using bevacizumab and 5FU. A portion of the same ACE-MRI data was used for conventional DCE-MRI data analysis with a separately measured pre-contrast T1 map. Tracer kinetic model parameters, such as Ktrans (permeability area surface product) and ve (extracellular space volume fraction), estimated from ACE-MRI were compared with those from DCE-MRI, in terms of correlation and Bland-Altman analyses. Results A three-fold increase of the median Ktrans by treatment was observed in the flank 4T1 tumors by both ACE-MRI and DCE-MRI. In contrast, the brain tumors did not show a significant change by the treatment in either ACE-MRI or DCE-MRI. Ktrans and ve values of the tumors from ACE-MRI were strongly correlated with those from DCE-MRI methods with correlation coefficients of 0.92 and 0.78, respectively, for the median values of 17 tumors. The Bland-Altman plot analysis showed a mean difference of -0.01 min-1 for Ktrans with the 95% limits of agreement of -0.12 min-1 to 0.09 min-1, and -0.05 with -0.37 to 0.26 for ve. Conclusion The tracer kinetic model parameters estimated from ACE-MRI and their changes by treatment closely matched those of DCE-MRI, which suggests that ACE-MRI can be used in place of conventional DCE-MRI for tumor progression monitoring and treatment response evaluation with a reduced scan time.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Kerryanne Winters
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Karl Kiser
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Mehran Baboli
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Sungheon Gene Kim
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Andersen BM, Miranda C, Hatzoglou V, DeAngelis LM, Miller AM. Leptomeningeal metastases in glioma: The Memorial Sloan Kettering Cancer Center experience. Neurology 2019; 92:e2483-e2491. [PMID: 31019097 DOI: 10.1212/wnl.0000000000007529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To perform a retrospective analysis examining the incidence and prognosis of glioma patients with leptomeningeal disease (LMD) at Memorial Sloan Kettering Cancer Center over a 15-year period and correlate these findings with clinicopathologic characteristics. METHODS We conducted a retrospective review of glioma patients with LMD at Memorial Sloan Kettering Cancer Center diagnosed from 2001 to 2016. Patients were identified through a keyword search of their electronic medical record and by ICD-9 codes. RESULTS One hundred three patients were identified with disseminated LMD and 85 patients with subependymal spread of disease, 4.7% of all patients with glioma. These cohorts were analyzed separately for time to development of disseminated LMD/subependymal LMD, median overall survival, and survival from LMD diagnosis. Patients were pooled for subsequent analyses (n = 188) because of comparable clinical behavior. LMD was present at glioma diagnosis in 10% of patients. In the remaining 90% of patients diagnosed at recurrence, time to LMD diagnosis, survival after LMD diagnosis, and overall survival varied by original histology. Patients with oligodendroglioma had a median survival of 10.8 (range 1.8-67.7) months, astrocytoma 6.5 (0.1-28.5) months, and glioblastoma 3.8 (0.1-32.6) months after LMD diagnosis. In addition, we found that treatment of LMD was associated with superior performance status and increased survival. CONCLUSION Patients with LMD diagnosed at relapse may not have decreased overall survival as compared to historical controls with parenchymal relapse and may benefit from treatment.
Collapse
Affiliation(s)
- Brian M Andersen
- From the Department of Neurology (B.M.A., C.M.), New York Presbyterian/Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center; and Departments of Radiology (V.H.) and Neurology (L.M.D., A.M.M.) Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caroline Miranda
- From the Department of Neurology (B.M.A., C.M.), New York Presbyterian/Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center; and Departments of Radiology (V.H.) and Neurology (L.M.D., A.M.M.) Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- From the Department of Neurology (B.M.A., C.M.), New York Presbyterian/Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center; and Departments of Radiology (V.H.) and Neurology (L.M.D., A.M.M.) Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lisa M DeAngelis
- From the Department of Neurology (B.M.A., C.M.), New York Presbyterian/Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center; and Departments of Radiology (V.H.) and Neurology (L.M.D., A.M.M.) Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexandra M Miller
- From the Department of Neurology (B.M.A., C.M.), New York Presbyterian/Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center; and Departments of Radiology (V.H.) and Neurology (L.M.D., A.M.M.) Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
6
|
Liu YX, Zhou JN, Liu KH, Fu XP, Zhang ZW, Zhang QH, Yue W. CIRP regulates BEV-induced cell migration in gliomas. Cancer Manag Res 2019; 11:2015-2025. [PMID: 30881126 PMCID: PMC6417006 DOI: 10.2147/cmar.s191249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose A better understanding of the underlying molecular mechanisms in treatment failure of bevacizumab (BEV) for malignant glioma would contribute to overcome therapeutic resistance. Methods Here, we used a quantitative proteomic method to identify molecular signatures of glioblastoma cell after BEV treatment by two-dimensional liquid chromatography-tandem mass spectrometry analysis and 6-plex iTRAQ quantification. Next, the function of cold-inducible RNA-binding protein (CIRP), one of the most significantly affected proteins by drug treatment, was evaluated in drug resistance of glioma cells by invasion assays and animal xenograft assays. Target molecules bound by CIRP were determined using RNA-binding protein immunoprecipitation and microarray analysis. Then, these mRNAs were identified by quantitative real-time PCR. Results Eighty-seven proteins were identified with significant fold changes. The biological functional analysis indicated that most of the proteins were involved in the process of cellular signal transduction, cell adhesion, and protein transport. The expression of CIRP greatly decreased after BEV treatment, and ectopic expression of CIRP abolished cell migration in BEV-treated glioma cells. In addition, CIRP could bind mRNA of CXCL12 and inhibit BEV-induced increase of CXCL12 in glioma cells. Conclusion These data suggested that CIRP may take part in BEV-induced migration of gliomas by binding of migration-relative RNAs.
Collapse
Affiliation(s)
- Yu-Xiao Liu
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China, .,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Pin Fu
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Zhi-Wen Zhang
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Qin-Hong Zhang
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China,
| |
Collapse
|
7
|
Piper RJ, Senthil KK, Yan JL, Price SJ. Neuroimaging classification of progression patterns in glioblastoma: a systematic review. J Neurooncol 2018; 139:77-88. [PMID: 29603080 DOI: 10.1007/s11060-018-2843-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. METHODS We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. RESULTS From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. CONCLUSIONS Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.
Collapse
Affiliation(s)
- Rory J Piper
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK.
| | - Keerthi K Senthil
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| | - Jiun-Lin Yan
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
8
|
Liu YX, Liu WJ, Zhang HR, Zhang ZW. Delivery of bevacizumab by intracranial injection: assessment in glioma model. Onco Targets Ther 2018; 11:2673-2683. [PMID: 29780259 PMCID: PMC5951223 DOI: 10.2147/ott.s159913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Many reports have indicated that the intravenous administration of bevacizumab produces a number of systemic side effects. Therefore, we investigated the therapeutic effects of intratumoral bevacizumab administration using a glioma animal model. Methods The glioma cell lines U251 and U87 that carried luciferase were implanted into the brains of mice to develop glioma models. Glioma-bearing mice were treated with bevacizumab intravenously or intratumorally by Alzet micro-osmotic pumps, and the survival time of mice was monitored. Tumor volumes and location were observed by fluorescence imaging and histological analysis. Levels of microvessel marker, cancer stem cell marker as well as angiogenesis-, invasion-, and inflammation-related factors in tumors were examined by immunohistochemical staining. Results Mice treated with intratumoral low-dose bevacizumab had smaller tumor volumes, longer survival time, lower microvessel density, and fewer cancer stem cells as compared with untreated and intravenously treated mice. Furthermore, expression levels of inflammation-related factors increased signifiwhereas that of angiogenesis- and invasion-related factors decreased in intratumorally treated animals, compared with intravenously treated mice. Conclusion These results implied bevacizumab delivery by intratumoral injection via Alzet micro-osmotic pumps may be a more effective and safer protocol for treating gliomas.
Collapse
Affiliation(s)
- Yu-Xiao Liu
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wen-Jia Liu
- Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Hui-Ru Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China.,College of Biological Engineering, HeNan University of Technology, Beijing, People's Republic of China
| | - Zhi-Wen Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
9
|
Lee JW, Lim DH, Sung KW, Lee HJ, Yi ES, Yoo KH, Koo HH, Suh YL, Shin HJ. Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for High-Grade Gliomas in Children and Adolescents. J Korean Med Sci 2017; 32:195-203. [PMID: 28049229 PMCID: PMC5219984 DOI: 10.3346/jkms.2017.32.2.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022] Open
Abstract
With the aim to investigate the outcome of tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT) for high-grade gliomas (HGGs), we retrospectively reviewed the medical records of 30 patients with HGGs (16 glioblastomas, 7 anaplastic astrocytomas, and 7 other HGGs) between 2006 and 2015. Gross or near total resection was possible in 11 patients. Front-line treatment after surgery was radiotherapy (RT) in 14 patients and chemotherapy in the remaining 16 patients including 3 patients less than 3 years of age. Eight of 12 patients who remained progression free and 5 of the remaining 18 patients who experienced progression during induction treatment underwent the first HDCT/auto-SCT with carboplatin + thiotepa + etoposide (CTE) regimen and 11 of them proceeded to the second HDCT/auto-SCT with cyclophosphamide + melphalan (CyM) regimen. One patient died from hepatic veno-occlusive disease (VOD) during the second HDCT/auto-SCT; otherwise, toxicities were manageable. Four patients in complete response (CR) and 3 of 7 patients in partial response (PR) or second PR at the first HDCT/auto-SCT remained event free: however, 2 patients with progressive tumor experienced progression again. The probabilities of 3-year overall survival (OS) after the first HDCT/auto-SCT in 11 patients in CR, PR, or second PR was 58.2% ± 16.9%. Tumor status at the first HDCT/auto-SCT was the only significant factor for outcome after HDCT/auto-SCT. There was no difference in survival between glioblastoma and other HGGs. This study suggests that the outcome of HGGs in children and adolescents after HDCT/auto-SCT is encouraging if the patient could achieve CR or PR before HDCT/auto-SCT.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyeong Jin Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Sang Yi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyung Jin Shin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Niyazi M, Harter PN, Hattingen E, Rottler M, von Baumgarten L, Proescholdt M, Belka C, Lauber K, Mittelbronn M. Bevacizumab and radiotherapy for the treatment of glioblastoma: brothers in arms or unholy alliance? Oncotarget 2016; 7:2313-28. [PMID: 26575171 PMCID: PMC4823037 DOI: 10.18632/oncotarget.6320] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) represents the most frequent primary brain tumor in adults and carries a dismal prognosis despite aggressive, multimodal treatment regimens involving maximal resection, radiochemotherapy, and maintenance chemotherapy. Histologically, GBMs are characterized by a high degree of VEGF-mediated vascular proliferation. In consequence, new targeted anti-angiogenic therapies, such as the monoclonal anti-VEGF-A antibody bevacizumab, have proven effective in attenuating tumor (neo)angiogenesis and were shown to possess therapeutic activity in several phase II trials. However, the role of bevacizumab in the context of multimodal therapy approaches appears to be rather complex. This review will give insights into current concepts, limitations, and controversies regarding the molecular mechanisms and the clinical benefits of bevacizumab treatment in combination with radio(chemo)therapy - particularly in face of the results of recent phase III trials, which failed to demonstrate convincing improvements in overall survival (OS).
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Maya Rottler
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University of Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Szwarc P, Kawa J, Rudzki M, Pietka E. Automatic brain tumour detection and neovasculature assessment with multiseries MRI analysis. Comput Med Imaging Graph 2015; 46 Pt 2:178-90. [PMID: 26183648 DOI: 10.1016/j.compmedimag.2015.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 12/01/2022]
Abstract
In this paper a novel multi-stage automatic method for brain tumour detection and neovasculature assessment is presented. First, the brain symmetry is exploited to register the magnetic resonance (MR) series analysed. Then, the intracranial structures are found and the region of interest (ROI) is constrained within them to tumour and peritumoural areas using the Fluid Light Attenuation Inversion Recovery (FLAIR) series. Next, the contrast-enhanced lesions are detected on the basis of T1-weighted (T1W) differential images before and after contrast medium administration. Finally, their vascularisation is assessed based on the Regional Cerebral Blood Volume (RCBV) perfusion maps. The relative RCBV (rRCBV) map is calculated in relation to a healthy white matter, also found automatically, and visualised on the analysed series. Three main types of brain tumours, i.e. HG gliomas, metastases and meningiomas have been subjected to the analysis. The results of contrast enhanced lesions detection have been compared with manual delineations performed independently by two experts, yielding 64.84% sensitivity, 99.89% specificity and 71.83% Dice Similarity Coefficient (DSC) for twenty analysed studies of subjects with brain tumours diagnosed.
Collapse
Affiliation(s)
- Pawel Szwarc
- Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
| | - Jacek Kawa
- Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland.
| | - Marcin Rudzki
- Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
| | - Ewa Pietka
- Silesian University of Technology, Faculty of Biomedical Engineering, Zabrze, Poland
| |
Collapse
|
12
|
Systematic review and meta-analysis of phase I/II targeted therapy combined with radiotherapy in patients with glioblastoma multiforme: quality of report, toxicity, and survival. J Neurooncol 2015; 123:307-14. [PMID: 25975195 DOI: 10.1007/s11060-015-1802-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
To perform a systematic review and meta-analysis of severe adverse events (SAE) reported in early trials combining molecularly targeted therapies (MTT) with radiotherapy (RT), and to compare them to standard therapy. A summary data meta-analysis was performed and compared to the historical standard. Inclusion criteria were phase I and/or II trials published between 2000 and 2011, with glioblastoma multiforme patients treated with RT and MTT. Pooled incidence rates (IR) of SAE were estimated as well as the pooled median progression-free survival (PFS) and overall survival (OS). Nineteen prospective trials (9 phase I, 1 phase I/II and 9 phase II) out of 29 initially selected were included (n = 755 patients). The exact number of patients who had experienced SAE was mentioned in 37 % of the trials, concerning only 17 % of the patients. Information such as the period during which adverse events were monitored, the planned treatment duration, and late toxicity were not reported in the trials. The pooled IR of overall SAE was 131.2 (95 % CI 88.8-193.7) per 1000 person-months compared to 74.7 (63.6-87.8) for standard therapy (p < 0.01). Significant differences were observed for gastrointestinal events (p = 0.05) and treatment-related deaths (p = 0.02), in favour of standard therapy. No significant difference was observed in PFS and OS. Reporting a summary of toxicity data in early clinical trials should be stringently standardized. The use of MTT with RT compared to standard therapy increased SAE while yielded comparable survival in glioblastoma multiforme patients.
Collapse
|
13
|
Curry RC, Dahiya S, Alva Venur V, Raizer JJ, Ahluwalia MS. Bevacizumab in high-grade gliomas: past, present, and future. Expert Rev Anticancer Ther 2015; 15:387-97. [DOI: 10.1586/14737140.2015.1028376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Yang L, Zhao J, Zhou G, Wang Y, Li L, Yuan H, Nan X, Guan L, Pei X. The 9L(LUC)/Wistar rat glioma model is not suitable for immunotherapy. Neural Regen Res 2015; 7:1406-11. [PMID: 25657674 PMCID: PMC4308791 DOI: 10.3969/j.issn.1673-5374.2012.18.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
The availability of a well-characterized animal brain tumor model will play an important role in identifying treatments for human brain tumors. Wistar rats bearing 9L glioma cells can develop solid, well-circumcised tumors, and may be a useful animal model for the evaluation of various therapeutic approaches for gliosarcomas. In this study, the 9L/Wistar rat glioma model was produced by intracerebral implantation of 9LLUC glioma cells syngenic to Fischer 344 (F344) rats. Bioluminescence imaging showed that tumors progressively grew from day 7 to day 21 in 9LLUC/F344 rats, and tumor regression was found in some 9LLUC/Wistar rats. Hematoxylin-eosin staining verified that intracranial tumors were gliomas. Immunohistochemistry results demonstrated that no CD4- and CD8-positive cells were found in the syngeneic 9LLUC/F344 model. However, many infiltrating CD4- and CD8-positive cells were observed within the tumors of the 9LLUC/Wistar model. Our data suggests that compared with 9L/F344 rats, 9L glioma Wistar rats may not be suitable for evaluating brain glioma immunotherapies, even though the model induced an immune response and exhibited tumor regression.
Collapse
Affiliation(s)
- Liping Yang
- Department of Medicine, the 263 Hospital, Beijing 101149, China ; Department of Neurology, South West Hospital, the Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Jingxiang Zhao
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Guihong Zhou
- Department of Neurosurgery, the 263 Hospital, Beijing 101149, China
| | - Yunfang Wang
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Lusi Li
- Department of Neurology, South West Hospital, the Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Hongfeng Yuan
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Xue Nan
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Lidong Guan
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Xuetao Pei
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
15
|
Abrams DA, Hanson JA, Brown JM, Hsu FPK, Delashaw JB, Bota DA. Timing of surgery and bevacizumab therapy in neurosurgical patients with recurrent high grade glioma. J Clin Neurosci 2014; 22:35-9. [PMID: 25481268 DOI: 10.1016/j.jocn.2014.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 01/16/2023]
Abstract
Malignant gliomas continue to have a dismal prognosis despite all available treatments and advances made in understanding molecular mechanisms and signaling pathways. Conventional treatments, such as surgery, chemotherapy and radiation, have been used with limited success. Bevacizumab is a recently described molecule, which inhibits endothelial proliferation and prevents formation of new blood vessels in tumor. However, this treatment confers increased hemorrhage risk and impairs wound healing. Therefore, the timing of surgery for patients receiving bevacizumab, who are in need of surgery, is critical. We performed a literature review to establish the appropriate timing between the cessation of bevacizumab therapy and surgical intervention. Our literature review indicated that the optimum time between cessation of bevacizumab therapy and surgery was 4 weeks. The timing for re-initiation of bevacizumab post-surgery was at least 2 weeks. The duration of preoperative cessation of bevacizumab treatment is critical in preventing life threatening surgical complications. The interval between the surgery and re-initiation of bevacizumab can be shortened. However, more studies are needed to ascertain the exact timing of preoperative and postoperative therapy.
Collapse
Affiliation(s)
- Daniela Alexandru Abrams
- Department of Neurological Surgery, University of California at Irvine, 101 The City Drive South, Building 200, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California at Irvine Medical Center, Orange, CA, USA.
| | - Joseph A Hanson
- Chao Family Comprehensive Cancer Center, University of California at Irvine Medical Center, Orange, CA, USA; Department of Neurology, University of California at Irvine, Orange, CA, USA
| | - Justin M Brown
- Department of Neurosurgery, University of California at San Diego, La Jolla, CA, USA
| | - Frank P K Hsu
- Department of Neurological Surgery, University of California at Irvine, 101 The City Drive South, Building 200, Orange, CA 92868, USA
| | - Johnny B Delashaw
- Department of Neurological Surgery, University of California at Irvine, 101 The City Drive South, Building 200, Orange, CA 92868, USA
| | - Daniela A Bota
- Department of Neurological Surgery, University of California at Irvine, 101 The City Drive South, Building 200, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California at Irvine Medical Center, Orange, CA, USA
| |
Collapse
|
16
|
Epidermal growth factor-like module containing mucin-like hormone receptor 2 expression in gliomas. J Neurooncol 2014; 121:53-61. [PMID: 25200831 DOI: 10.1007/s11060-014-1606-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor (EGF) module-containing mucin-like receptor 2 (EMR2) is a member of the seven span transmembrane adhesion G-protein coupled receptor subclass. This protein is expressed in a subset of glioblastoma (GBM) cells and associated with an invasive phenotype. The expression pattern and functional significance of EMR2 in low grade or anaplastic astrocytomas is unknown and our goal was to expand and further define EMR2's role in gliomas with an aggressive invasive phenotype. Using the TCGA survival data we describe EMR2 expression patterns across histologic grades of gliomas and demonstrate an association between increased EMR2 expression and poor survival (p < 0.05). This data supports prior functional data depicting that EMR2-positive neoplasms possess a greater capacity for infiltrative and metastatic spread. Genomic analysis suggests that EMR2 overexpression is associated with the mesenchymal GBM subtype (p < 0.0001). We also demonstrate that immunohistorchemistry is a feasible method for screening GBM patients for EMR2 expression. Protein and mRNA analysis demonstrated variable expression of all isoforms of EMR2 in all glioma grades, however GBM displayed the most diverse isoforms expression pattern as well as the highest expression of the EGF1-5 isoform of EMR2. Finally, a correlation of an increased EMR2 expression after bevacizumab treatment in glioma cells lines is identified. This observation should serve as the impetus for future studies to determine if this up-regulation of EMR2 plays a role in the observation of the diffuse and increasingly invasive recurrence patterns witnessed in a subset of GBM patients after bevacizumab treatment.
Collapse
|
17
|
Boikov AS, Schweitzer AD, Young RJ, Lavi E, Tsiouris AJ, Gupta A. Glioblastoma-arteriovenous fistula complex: imaging characteristics and treatment considerations. Clin Imaging 2014; 38:187-90. [DOI: 10.1016/j.clinimag.2013.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 10/26/2022]
|
18
|
Trevisan E, Bertero L, Bosa C, Magistrello M, Pellerino A, Rudà R, Soffietti R. Antiangiogenic therapy of brain tumors: the role of bevacizumab. Neurol Sci 2014; 35:507-14. [DOI: 10.1007/s10072-014-1627-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022]
|
19
|
Hata A, Fujita S, Takayama K, Katakami N. Bevacizumab for critical brain metastases in a patient with pulmonary pleomorphic carcinoma. Intern Med 2014; 53:1813-8. [PMID: 25130117 DOI: 10.2169/internalmedicine.53.2007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bevacizumab was initially contraindicated in patients with brain metastases, but several reports have shown the efficacy and safety of bevacizumab for brain metastases. We herein report the case of a patient with pulmonary pleomorphic carcinoma for which bevacizumab plus weekly paclitaxel following whole-brain radiotherapy (WBRT) was effectively and safely administered for critical and refractory brain metastases. Although the 50-year-old male patient received WBRT with anti-edema therapies for progressive brain metastases, his clinical symptoms deteriorated rapidly. After the completion of WBRT, we administered bevacizumab plus weekly paclitaxel, and his neurological symptoms improved dramatically. Brain magnetic resonance imaging demonstrated a marked response by the brain metastases and improved brain edema. This case suggested both synergism between WBRT and bevacizumab, and an anti-edema effect of bevacizumab. Bevacizumab may be therefore a potent therapeutic option for patients with refractory brain metastases.
Collapse
Affiliation(s)
- Akito Hata
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Japan
| | | | | | | |
Collapse
|
20
|
Scaringi C, Enrici RM, Minniti G. Combining molecular targeted agents with radiation therapy for malignant gliomas. Onco Targets Ther 2013; 6:1079-95. [PMID: 23966794 PMCID: PMC3745290 DOI: 10.2147/ott.s48224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important molecular pathways associated with aberrant activation or suppression of cellular signal transduction pathways involved in gliomagenesis, including epidermal growth factor receptor, vascular endothelial growth factor receptor, mammalian target of rapamycin, and integrins signaling pathways. The use of antiangiogenic agent bevacizumab, epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib, mammalian target of rapamycin inhibitors temsirolimus and everolimus, and integrin inhibitor cilengitide, in combination with radiation therapy, has been supported by encouraging preclinical data, resulting in a rapid translation into clinical trials. Currently, the majority of published clinical studies on the use of these agents in combination with radiation and cytotoxic therapies have shown only modest survival benefits at best. Tumor heterogeneity and genetic instability may, at least in part, explain the poor results observed with a single-target approach. Much remains to be learned regarding the optimal combination of targeted agents with conventional chemoradiation, including the use of multipathways-targeted therapies, the selection of patients who may benefit from combined treatments based on molecular biomarkers, and the verification of effective blockade of signaling pathways.
Collapse
Affiliation(s)
- Claudia Scaringi
- Department of Radiation Oncology, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | | | | |
Collapse
|
21
|
Bloch O, Safaee M, Sun MZ, Butowski NA, McDermott MW, Berger MS, Aghi MK, Parsa AT. Disseminated progression of glioblastoma after treatment with bevacizumab. Clin Neurol Neurosurg 2013; 115:1795-801. [PMID: 23706614 DOI: 10.1016/j.clineuro.2013.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/17/2013] [Accepted: 04/27/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Reports of glioblastoma (GBM) progression following treatment with bevacizumab indicate that a subset of patients develop disseminated, often minimally enhancing tumors that differ from the typical pattern of focal recurrence. We have reviewed our institutional experience with bevacizumab for GBM to evaluate the prognostic factors and outcomes of patients with disseminated progression. PATIENTS AND METHODS Medical records of patients treated for GBM at the University of California San Francisco from 2005 to 2009 were reviewed. Patients receiving bevacizumab for focal disease were evaluated and imaging was reviewed to identify patients who progressed in a disseminated pattern. Tumor and treatment factors were compared between focal and disseminated progressors to identify predictive factors for dissemination. Clinical outcomes were compared between progression groups. RESULTS Seventy-one patients received adjuvant bevacizumab at some point in their disease course in addition to surgical resection and standard chemoradiotherapy. Of these, 12 patients (17%) had disseminated progression after bevacizumab. There were no differences in patient demographics, surgical treatment, or bevacizumab administration between disseminated and focal progressors. Length of bevacizumab treatment for disseminated progressors trended toward increased time (7.4 vs. 5.4 months) but was not statistically significant (p=0.1). Although progression-free survival and overall survival did not differ significantly between progression groups (median survival from progression was 3.8 vs. 4.6 months, p=0.5), over 30% of focal progressors had a subsequent resection and enrollment in a surgically based clinical trial, whereas none of the disseminated progressors had further surgical intervention. Compared to previously published reports of GBM dissemination with and without prior bevacizumab treatment, our patients had a rate of disease dissemination similar to the baseline rate observed in patients treated without bevacizumab. CONCLUSION The risk of dissemination does not appear to be considerably increased due to the use of bevacizumab, and the pattern of disease at progression does not affect subsequent survival. Therefore, the risk of dissemination should not influence the decision to treat with bevacizumab, especially for recurrent disease.
Collapse
Affiliation(s)
- Orin Bloch
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, CA 94143-0112, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rahmathulla G, Hovey EJ, Hashemi-Sadraei N, Ahluwalia MS. Bevacizumab in high-grade gliomas: a review of its uses, toxicity assessment, and future treatment challenges. Onco Targets Ther 2013; 6:371-89. [PMID: 23620671 PMCID: PMC3633547 DOI: 10.2147/ott.s38628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High-grade gliomas continue to have dismal prognosis despite advances made in understanding the molecular genetics, signaling pathways, cytoskeletal dynamics, and the role of stem cells in gliomagenesis. Conventional treatment approaches, including surgery, radiotherapy, and cytotoxic chemotherapy, have been used with limited success. Therapeutic advances using molecular targeted therapy, immunotherapy, and others such as dietary treatments have not been able to halt tumor progression and disease-related death. High-grade gliomas (World Health Organization grades III/IV) are histologically characterized by cellular and nuclear atypia, neoangiogenesis, and necrosis. The expression of vascular endothelial growth factor, a molecular mediator, plays a key role in vascular proliferation and tumor survival. Targeting vascular endothelial growth factor has demonstrated promising results, with improved quality of life and progression-free survival. Bevacizumab, a humanized monoclonal antibody to vascular endothelial growth factor, is approved by the Food and Drug Administration as a single agent in recurrent glioblastoma and is associated with manageable toxicity. This review discusses the efficacy, practical aspects, and response assessment challenges with the use of bevacizumab in the treatment of high-grade gliomas.
Collapse
Affiliation(s)
| | - Elizabeth J Hovey
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Neda Hashemi-Sadraei
- Department of Medical Oncology, Neurological and Taussig Cancer Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - Manmeet S Ahluwalia
- Department of Medical Oncology, Neurological and Taussig Cancer Institutes, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
23
|
Den RB, Kamrava M, Sheng Z, Werner-Wasik M, Dougherty E, Marinucchi M, Lawrence YR, Hegarty S, Hyslop T, Andrews DW, Glass J, Friedman DP, Green MR, Camphausen K, Dicker AP. A phase I study of the combination of sorafenib with temozolomide and radiation therapy for the treatment of primary and recurrent high-grade gliomas. Int J Radiat Oncol Biol Phys 2013; 85:321-8. [PMID: 22687197 PMCID: PMC3635494 DOI: 10.1016/j.ijrobp.2012.04.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Despite recent advances in the management of high-grade and recurrent gliomas, survival remains poor. Antiangiogenic therapy has been shown to be efficacious in the treatment of high-grade gliomas both in preclinical models and in clinical trials. We sought to determine the safety and maximum tolerated dose of sorafenib when combined with both radiation and temozolomide in the primary setting or radiation alone in the recurrent setting. METHODS AND MATERIALS This was a preclinical study and an open-label phase I dose escalation trial. Multiple glioma cell lines were analyzed for viability after treatment with radiation, temozolomide, or sorafenib or combinations of them. For patients with primary disease, sorafenib was given concurrently with temozolomide (75 mg/m(2)) and 60 Gy radiation, for 30 days after completion of radiation. For patients with recurrent disease, sorafenib was combined with a hypofractionated course of radiation (35 Gy in 10 fractions). RESULTS Cell viability was significantly reduced with the combination of radiation, temozolomide, and sorafenib or radiation and sorafenib. Eighteen patients (11 in the primary cohort, 7 in the recurrent cohort) were enrolled onto this trial approved by the institutional review board. All patients completed the planned course of radiation therapy. The most common toxicities were hematologic, fatigue, and rash. There were 18 grade 3 or higher toxicities. The median overall survival was 18 months for the entire population. CONCLUSIONS Sorafenib can be safely combined with radiation and temozolomide in patients with high-grade glioma and with radiation alone in patients with recurrent glioma. The recommended phase II dose of sorafenib is 200 mg twice daily when combined with temozolomide and radiation and 400 mg with radiation alone. To our knowledge, this is the first publication of concurrent sorafenib with radiation monotherapy or combined with radiation and temozolomide.
Collapse
Affiliation(s)
- Robert B Den
- Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases. J Pediatr Hematol Oncol 2013; 35:e42-6. [PMID: 23249962 DOI: 10.1097/mph.0b013e318279aed8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas have poor prognosis. OBSERVATION We report on 2 patients with diffuse intrinsic pontine glioma treated with radiation, followed by temozolamide 200 mg/m/d for 5 days every 28 days and bevacizumab 10 mg/kg/dose every 14 days. Both patients have ongoing PFS of 37 and 47 months from diagnosis. A decrease in tumor size by >65% was observed in both the patients. Both patients continue treatment. No steroid requirement since 10 weeks after radiation. Quality of life is excellent and the chemotherapy regimen is well tolerated. CONCLUSIONS A clinical trial in an expanded cohort is warranted to determine the toxicity and evaluate response.
Collapse
|
25
|
Piccioni D, Lai A, Nghiemphu P, Cloughesy T. Bevacizumab as first-line therapy for glioblastoma. Future Oncol 2012; 8:929-38. [PMID: 22894667 DOI: 10.2217/fon.12.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bevacizumab is a monoclonal antibody that binds and neutralizes VEGF. Bevacizumab is currently indicated as monotherapy for recurrent glioblastoma. Recent data from Phase II trials of bevacizumab as first-line therapy for glioblastoma have been promising, and have led to two Phase III trials evaluating the use of bevacizumab as first-line therapy when combined with radiation and temozolomide. Potential complications relating to interpretation of the results of these Phase III studies include the crossover use of bevacizumab upon recurrence in the placebo arm. Recently published single-arm evaluations of adding bevacizumab to standard first-line therapy in glioblastoma multiforme have shown an improvement in progression-free survival and overall survival when compared with historical controls obtained prior to widespread use of bevacizumab in recurrent glioblastoma multiforme. When these data are compared with more contemporary studies from the bevacizumab era, the improvement in progression-free survival seems to be maintained but the impact on overall survival with first-line bevacizumab therapy seems less clear. Bevacizumab therapy alters the imaging characteristics of glioblastoma, and new criteria have been established to assess treatment response and progression in the setting of widespread bevacizumab use.
Collapse
Affiliation(s)
- David Piccioni
- Department of Neurology, University of California, UCLA Department of Neurology, Neuro-Oncology Program, Los Angeles, CA 90024, USA
| | | | | | | |
Collapse
|
26
|
Sheehan JP, Xu Z, Popp B, Kowalski L, Schlesinger D. Inhibition of glioblastoma and enhancement of survival via the use of mibefradil in conjunction with radiosurgery. J Neurosurg 2012. [PMID: 23198803 DOI: 10.3171/2012.11.jns121087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The survival of patients with high-grade gliomas remains unfavorable. Mibefradil, a T-type calcium channel inhibitor capable of synchronizing dividing cells at the G1 phase, has demonstrated potential benefit in conjunction with chemotherapeutic agents for gliomas in in vitro studies. In vivo study of mibefradil and radiosurgery is lacking. The authors used an intracranial C6 glioma model in rats to study tumor response to mibefradil and radiosurgery. METHODS Two weeks after implantation of C6 cells into the animals, each rat underwent MRI every 2 weeks thereafter for 8 weeks. After tumor was confirmed on MRI, the rats were randomly assigned to one of the experimental groups. Tumor volumes were measured on MR images. Experimental Group 1 received 30 mg/kg of mibefradil intraperitoneally 3 times a day for 1 week starting on postoperative day (POD) 15; Group 2 received 8 Gy of cranial radiation via radiosurgery delivered on POD 15; Group 3 underwent radiosurgery on POD 15, followed by 1 week of mibefradil; and Group 4 received mibefradil on POD 15 for 1 week, followed by radiosurgery sometime from POD 15 to POD 22. Twenty-seven glioma-bearing rats were analyzed. Survival was compared between groups using Kaplan-Meier methodology. RESULTS Median survival in Groups 1, 2, 3, and 4 was 35, 31, 43, and 52 days, respectively (p = 0.036, log-rank test). Two animals in Group 4 survived to POD 60, which is twice the expected survival of untreated animals in this model. Analysis of variance and a post hoc test indicated no tumor volume differences on PODs 15 and 29. However, significant volume differences were found on POD 43; mean tumor volumes for Groups 1, 2, 3, and 4 were 250, 266, 167, and 34 mm(3), respectively (p = 0.046, ANOVA). A Cox proportional hazards regression test showed survival was associated with tumor volume on POD 29 (p = 0.001) rather than on POD 15 (p = 0.162). In vitro assays demonstrated an appreciable and dose-dependent increase in apoptosis between 2- and 7-μM concentrations of mibefradil. CONCLUSIONS Mibefradil response is schedule dependent and enhances survival and reduces glioblastoma when combined with ionizing radiation.
Collapse
Affiliation(s)
- Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
27
|
Annamalai AK, Dean AF, Kandasamy N, Kovacs K, Burton H, Halsall DJ, Shaw AS, Antoun NM, Cheow HK, Kirollos RW, Pickard JD, Simpson HL, Jefferies SJ, Burnet NG, Gurnell M. Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary 2012; 15:276-87. [PMID: 22076588 DOI: 10.1007/s11102-011-0363-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Pituitary carcinoma occurs in ~0.2% of resected pituitary tumours and carries a poor prognosis (mean survival <4 years), with standard chemotherapy regimens showing limited efficacy. Recent evidence suggests that temozolomide (TMZ), an orally-active alkylating agent used principally in the management of glioblastoma, may also be effective in controlling aggressive/invasive pituitary adenomas/carcinomas. A low level of expression of the DNA-repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) predicts TMZ responsiveness in glioblastomas, and a similar correlation has been observed in the majority of aggressive pituitary adenomas/carcinomas reported to date. Here, we report a case of a silent pituitary corticotroph adenoma, which subsequently re-presented with Cushing's syndrome due to functioning hepatic metastases. The tumour exhibited low immunohistochemical MGMT expression in both primary (pituitary) and secondary (hepatic) lesions. Initial TMZ therapy (200 mg/m² for 5 days every 28 days-seven cycles) resulted in marked clinical, biochemical [>50% fall in adrenocorticotrophic hormone (ACTH)] and radiological [partial RECIST (response evaluation criteria in solid tumors) response] improvements. The patient then underwent bilateral adrenalectomy. However, despite reintroduction of TMZ therapy (further eight cycles) ACTH levels plateaued and no further radiological regression was observed. We review the existing literature reporting TMZ efficacy in pituitary corticotroph tumours, and highlight the pointers/lessons for treating aggressive pituitary neoplasia that can be drawn from experience of susceptibility and evolving resistance to TMZ therapy in glioblastoma. Possible strategies for mitigating resistance developing during TMZ treatment of pituitary adenomas/carcinomas are also considered.
Collapse
Affiliation(s)
- A K Annamalai
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge & Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fangusaro J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol 2012; 2:105. [PMID: 22937526 PMCID: PMC3426754 DOI: 10.3389/fonc.2012.00105] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022] Open
Abstract
High grade gliomas (HGG) are one of the most common central nervous system (CNS) tumors encountered in adults, but they only represent approximately 8–12% of all pediatric CNS tumors. Historically, pediatric HGG were thought to be similar to adult HGG since they appear histologically identical; however, molecular, genetic, and biologic data reveal that they are distinct. Similar to adults, pediatric HGG are very aggressive and malignant lesions with few patients achieving long-term survival despite a variety of therapies. Initial treatment strategies typically consist of a gross total resection (GTR) when feasible followed by focal radiotherapy combined with chemotherapy. Over the last few decades, a wealth of data has emerged from basic science and pre-clinical animal models helping to better define the common biologic, genetic, and molecular make-up of these tumors. These data have not only provided a better understanding of tumor biology, but they have also provided new areas of research targeting molecular and genetic pathways with the potential for novel treatment strategies and improved patient outcomes. Here we provide a review of pediatric non-brainstem HGG, including epidemiology, presentation, histology, imaging characteristics, treatments, survival outcomes, and an overview of both basic and translational research. An understanding of all relevant pre-clinical tumor models, including their strengths and pitfalls is essential in realizing improved patient outcomes in this population.
Collapse
Affiliation(s)
- Jason Fangusaro
- Pediatric Neuro-Oncology, The Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
29
|
Antiangiogenic therapy in the management of brain tumors: a clinical overview. Cancer Chemother Pharmacol 2012; 70:353-63. [DOI: 10.1007/s00280-012-1926-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/05/2012] [Indexed: 12/15/2022]
|
30
|
Wu JM, Staton CA. Anti-angiogenic drug discovery: lessons from the past and thoughts for the future. Expert Opin Drug Discov 2012; 7:723-43. [PMID: 22716277 DOI: 10.1517/17460441.2012.695774] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Since the pioneering work of Judah Folkman, the discovery of bevacizumab has introduced the use of anti-angiogenic agents as a new modality for the treatment of cancer. Currently, hundreds of clinical trials involving anti-angiogenic agents, targeting different elements of the tumour angiogenesis pathway, are underway. However, thus far, the benefits of anti-angiogenic therapy in unselected patient populations are often marginal with harmful side effects. AREAS COVERED This article presents a detailed discussion of the lessons learnt from the use of bevacizumab and other VEGF pathway inhibitors in the clinical setting. Specifically, this article provides a review of the literature on anti-VEGF agents and other angiogenesis inhibitors used in pre-clinical and clinical trials for cancer treatment. EXPERT OPINION Future anti-angiogenic drug design centres on multiple protein targets and combinations including: growth factors, hypoxia-inducible factor and tumour endothelial cell markers unique to the tumour vasculature. Furthermore, treatment dosing, scheduling and combination with radiation and chemotherapy require further investigation, as does the potential of treating early disease, and the development of biomarkers which accurately predict response to therapy. These are essential for the future development of these drugs with individualised therapy likely to be the ultimate goal.
Collapse
Affiliation(s)
- Jessie M Wu
- University of Sheffield, School of Medicine and Biomedical Sciences, CR-UK/YCR Sheffield Cancer Research Centre, Academic Unit of Surgical Oncology, Microcirculation Research Group, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX, UK
| | | |
Collapse
|
31
|
Sweet JA, Feinberg ML, Sherman JH. The role of avastin in the management of recurrent glioblastoma. Neurosurg Clin N Am 2012; 23:331-41, x. [PMID: 22440876 DOI: 10.1016/j.nec.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glioblastoma multiforme is a malignant primary brain tumor for which no cure has been developed. However, with aggressive surgical resection, radiation, and the advent of temozolomide, the overall survival of patients with glioblastomas has improved significantly. Despite this multimodal treatment, glioblastoma invariably recurs. Although treatment options for glioblastoma recurrence are limited, one promising therapy is bevacizumab (Avastin). The role of Avastin in the management of recurrent glioblastomas is reviewed.
Collapse
Affiliation(s)
- Jennifer A Sweet
- Department of Neurological Surgery, George Washington University Medical Center, 2150 Pennsylvania Avenue, Northwest Suite 7420, Washington, DC 20037, USA
| | | | | |
Collapse
|
32
|
Abstract
OBJECTIVE Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive tumors and have a poor prognosis. Nearly all patients experience disease progression after definitive treatment, accompanied by severe neurologic deficits and morbidity. Here, we report a series of patients treated with reirradiation for palliation of symptoms. METHODS Six patients received reirradiation for progressive DIPG at MD Anderson Cancer Center from 2007 to 2009. Progression after initial chemoradiation and salvage chemotherapy had been confirmed clinically and by magnetic resonance imaging. Each case was discussed at a multidisciplinary conference before reirradiation. RESULTS Interval between the initial radiation therapy and reirradiation was 8 to 28 months. The initial radiation therapy dose was 54 to 55.8 Gy. Time to initial progression was 4 to 18 months. All of the patients had further progression on salvage chemotherapy. Reirradiation was given with concurrent chemotherapy to a dose of 20 Gy (n=4) or 18 Gy (n=1); 1 patient withdrew care after a single 2-Gy fraction. Four patients had substantial clinical improvement in symptoms, with improvement in speech (n=3), ataxia (n=3), and swallowing (n=2). Three patients showed renewed ability to ambulate after reirradiation. Four patients had decreased tumor size on posttreatment magnetic resonance imaging. The median clinical progression-free survival time was 5 months. Acute radiation-related toxicities were fatigue (n=2), alopecia (n=2), and decreased appetite (n=1). No grade 3 or 4 toxicities were reported. CONCLUSIONS Reirradiation with chemotherapy may be feasible to improve symptoms and delay progression with minimal toxicity. Patients who are most likely to benefit may be those with prolonged response to initial therapy and a long interval since initial radiation.
Collapse
|
33
|
Abstract
Gliobastoma multiform (GBM) is the most common and aggressive brain tumor, which is characterized by its infiltrative nature. Current standard therapy for GBMs consists of surgery followed by radiotherapy combined with the alkylating agent temozolomide (TMZ). Recent clinical trials have demonstrated that this chemo-irradiation approach results in a significant increase in survival compared to radiotherapy alone. Nevertheless, due to tumor recurrence, the median survival time is still limited to approximately 15 months. Recently, several studies have focused on aberrant signal transduction in GBM, resistance mechanisms of GBM to TMZ and to radiotherapy. Attention has been focused on molecular targets including phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, protein kinase C (pKC) pathway, Ras/mitogen-activated protein kinase pathway (MAPK), Wnt pathway and intrinsic or extrinsic apoptosis pathways. In addition, research has been directed to radiotherapy and radiosensitizing agents, and cancer gene therapy as well. This article will address several resistance mechanisms of GBM to chemotherapy and radiotherapy and the recent preclinical and clinical studies on targeted therapy.
Collapse
Affiliation(s)
- N H Rekers
- Department of Medical Oncology, VU University Medical Center, The Netherlands
| | | | | |
Collapse
|
34
|
Narayana A, Gruber D, Kunnakkat S, Golfinos JG, Parker E, Raza S, Zagzag D, Eagan P, Gruber ML. A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 2011; 116:341-5. [PMID: 22035272 DOI: 10.3171/2011.9.jns11656] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The presence of angiogenesis is a hallmark of glioblastoma (GBM). Vascular endothelial growth factor (VEGF), which drives angiogenesis, provides an additional target for conventional therapy. The authors conducted a prospective clinical trial to test the effectiveness of bevacizumab, an inhibitor of VEGF, in newly diagnosed GBM. METHODS From 2006 through 2010, 51 eligible patients with newly diagnosed GBM were treated with involved-field radiation therapy and concomitant temozolomide (75 mg/m(2) daily for 42 days) along with bevacizumab (10 mg/kg every 2 weeks), starting 29 days after surgery. This was followed by 6 cycles of adjuvant temozolomide therapy (150 mg/m(2) on Days 1-7 of a 28-day cycle) with bevacizumab administered at 10 mg/kg on Days 8 and 22 of each 28-day cycle. RESULTS The 6- and 12-month progression-free survival (PFS) rates were 85.1% and 51%, respectively. The 12- and 24-month overall survival (OS) rates were 85.1% and 42.5%, respectively. Grade III/IV toxicities were noted in 10 patients (19.6%). No treatment-related deaths were observed. Asymptomatic intracranial bleeding was noted in 5 patients. CONCLUSIONS The addition of bevacizumab to conventional therapy in newly diagnosed GBM appears to improve both PFS and OS in patients with newly diagnosed GBM, with acceptable morbidity. A shift toward diffuse relapse was noted in a significant number of patients. Ongoing Phase III clinical trials will show the true benefit of this antiangiogenic approach.
Collapse
Affiliation(s)
- Ashwatha Narayana
- Departments of Radiation Oncology, New York University Langone Medical Center, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ballangrud AM, Lymberis S, Thakur SB, Karimi S, Huang W, Abrey LE, Beal K, Iwamoto FM, Brennan C, Gutin PH, Chang J. Magnetic resonance spectroscopy imaging in radiotherapy planning for recurrent glioma. Med Phys 2011; 38:2724-30. [PMID: 21776809 DOI: 10.1118/1.3574884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate how incorporation of magnetic resonance spectroscopy imaging (MRSI) into radiotherapy planning would increase the target volume for patients with recurrent glioma. METHODS After prior standard radiotherapy, 25 patients with recurrent glioma were treated with bevacizumab and concurrent hypofractionated stereotactic radiotherapy (HFSRT), delivering 30 Gy in five fractions. MRSI were acquired for 12 patients. Areas with markedly higher choline levels relative to the levels of total creatine and N-acetylaspartate were identified and referred to as MRSI voxels with elevated metabolite ratios (EMR). Gross tumor volume (GTV) consisted of contrast-enhancing tumor on T1-weighted magnetic resonance images (MRI) and computed tomography. Clinical target volume (CTV) was GTV + 5 mm margin and MRSI voxels with EMR. Overall survival (OS) and 6-month progression free survival (PFS) for these patients were reported in a prior publication [Gutin et al., Int. J. Radiat. Oncol., Biol., Phys. 75(1), 156-163 (2009)], and the outcome was correlated with the GTV and the volume of MRSI voxels with EMR in this study. RESULTS Seven of the 12 patients had MRSI voxels with EMR. If none of the MRSI voxels with EMR were included, the CTV would range from 9.2 to 73.0 cm3 with a median of 31.0 cm3, whereas if all voxels were included, the CTV would range from 27.4 to 74.4 cm3 with a median of 35.0 cm3. For three of the seven patients, including the voxels with EMR, would have increased the CTV by 14%-23%. For one patient, where the MRSI voxels with EMR did not overlap the GTV, including these voxels would increase the CTV by 198%. No correlation could be found between the OS and PFS and the GTV or the volume of MRSI voxels with EMR. CONCLUSIONS Seven of 12 patients with recurrent glioma had MRSI voxels with EMR. For four of these seven patients, including the MRSI voxels with EMR, significantly increased the CTV. This study does not have statistical power to conclude on the importance of including areas with MRSI-suspect disease into the radiation target volume.
Collapse
Affiliation(s)
- Ase M Ballangrud
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bevacizumab in the treatment of high-grade gliomas: an overview. Angiogenesis 2011; 14:423-30. [DOI: 10.1007/s10456-011-9232-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/09/2011] [Indexed: 01/01/2023]
|
37
|
Clark AJ, Butowski NA, Chang SM, Prados MD, Clarke J, Polley MYC, Sughrue ME, McDermott MW, Parsa AT, Berger MS, Aghi MK. Impact of bevacizumab chemotherapy on craniotomy wound healing. J Neurosurg 2011; 114:1609-16. [DOI: 10.3171/2010.10.jns101042] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Object
The FDA approval of bevacizumab for recurrent glioblastoma has resulted in its increased use in this patient population. Phase II trials reported 4%–6% impaired wound healing for bevacizumab initiated postoperatively. The effect of preoperative bevacizumab on subsequent craniotomy healing has not been addressed.
Methods
The authors retrospectively reviewed the cases of patients who underwent craniotomy for recurrent glioblastoma between 2005 and 2009, evaluating bevacizumab therapy/duration and healing complications (dehiscence, pseudomeningocele, CSF leak, and wound/bone infection). The Wilcoxon rank-sum test and Kruskal-Wallis test were used to compare continuous variables between groups. The Fisher exact test was used to assess for an association between categorical variables, including the comparison of wound-healing complication rates. Logistic regression models were used to estimate odds ratios of wound-healing complications while adjusting for baseline variables.
Results
Two hundred nine patients underwent a second craniotomy (161 patients) or third craniotomy (48 patients) for recurrent glioblastoma. Twenty-six individuals (12%) developed wound-healing complications. One hundred sixty-eight patients received no bevacizumab, 23 received preoperative bevacizumab, and 18 received postoperative bevacizumab. Significantly more patients receiving preoperative bevacizumab developed healing complications (35%) than non–bevacizumab-treated patients (10.0%, p = 0.004). Postoperative bevacizumab was associated with 6% impaired healing, not significantly different from non–bevacizumab-treated controls (p = 1.0). Preoperative bevacizumab treatment duration (weeks) did not influence healing (OR 0.98, p = 0.55). More healing complications occurred in patients receiving preoperative bevacizumab than in non–bevacizumab-treated controls before the third craniotomy (44% vs 9%, p = 0.03).
Conclusions
Although subject to the limitations of a retrospective study, we demonstrate that preoperative bevacizumab treatment resulted in impaired healing after a second and third craniotomy, compared with minimal effect of postoperative bevacizumab. This effect is more striking for the third craniotomy and for a shorter delay between bevacizumab and surgery. These complications should be acknowledged as increased bevacizumab use results in more post–bevacizumab-treated patients in whom surgery for recurrent glioblastoma is considered. Based on these results, the authors recommend performing repeated craniotomy more than 28 days after last administered dose of bevacizumab whenever possible.
Collapse
|
38
|
Mazeron R, Anderson B, Supiot S, Paris F, Deutsch E. Current state of knowledge regarding the use of antiangiogenic agents with radiation therapy. Cancer Treat Rev 2011; 37:476-86. [PMID: 21546163 DOI: 10.1016/j.ctrv.2011.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 12/15/2022]
Abstract
Angiogenesis has been a central theme of oncologic research for several years. Recently, improved understanding of its mechanisms has led to the development of several antiangiogenic agents. Some have demonstrated their effectiveness in large randomized studies; however, no antiangiogenic agent has yet been approved for treatment in combination with radiotherapy. Numerous preclinical studies and a few small clinical trials have recently reported encouraging results. The objective of this article is to review the concept of targeted antiangiogenic agents and the early clinical results of their use in combination with radiation therapy.
Collapse
Affiliation(s)
- Renaud Mazeron
- Radiation Oncology, Institut Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
Despite advances in upfront therapy, the prognosis in the great majority of patients with glioblastoma (GBM) is poor as almost all recur and result in disease-related death. Glioblastoma are highly vascularized cancers with elevated expression levels of vascular endothelial growth factor (VEGF), the dominant mediator of angiogenesis. A compelling biologic rationale, a need for improved therapy, and positive results from studies of bevacizumab in other cancers led to the evaluation of bevacizumab in the treatment of recurrent GBM. Bevacizumab, a humanized monoclonal antibody that targets VEGF, has been shown to improve patient outcomes in combination with chemotherapy (most commonly irinotecan) in recurrent GBM, and on the basis of positive results in two prospective phase 2 studies, bevacizumab was granted accelerated approval by the US Food and Drug Administration (FDA) as a single agent in recurrent GBM. Bevacizumab therapy is associated with manageable, class-specific toxicity as severe treatment-related adverse events are observed in only a minority of patients. With the goal of addressing questions and controversies regarding the optimal use of bevacizumab, the objective of this review is to provide a summary of the clinical efficacy and safety data of bevacizumab in patients with recurrent GBM, the practical issues surrounding the administration of bevacizumab, and ongoing investigations of bevacizumab in managing GBM.
Collapse
Affiliation(s)
- Marc C. Chamberlain
- Departments of Neurology and Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther 2011; 28:334-40. [PMID: 21432029 DOI: 10.1007/s12325-011-0007-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Indexed: 12/24/2022]
Abstract
Despite treatment with the current standard-of-care therapies, patients with newly diagnosed glioblastoma multiforme (GBM) exhibit dismal prognoses. Bevacizumab has demonstrated activity in patients with recurrent GBM and phase 2 trials indicate that the combination of bevacizumab with standard-of-care therapy is feasible and active for patients with newly diagnosed GBM. Bevacizumab has been granted US approval for use as single-agent therapy for patients with progressive GBM following prior therapy, although it has not received approval for use in patients with GBM in Europe. Phase 3 studies have been initiated in patients with newly diagnosed GBM and are currently recruiting patients. We describe the protocol for the AVAglio phase 3 registration trial, which is designed to evaluate the efficacy and safety of combining bevacizumab with standard-of-care therapy in patients with newly diagnosed GBM.
Collapse
|
41
|
Roesler R, Brunetto AT, Abujamra AL, de Farias CB, Brunetto AL, Schwartsmann G. Current and emerging molecular targets in glioma. Expert Rev Anticancer Ther 2011; 10:1735-51. [PMID: 21080801 DOI: 10.1586/era.10.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common and lethal neurological cancers. Despite research efforts, the prognosis for patients with malignant gliomas remains poor. Advances in the understanding of cellular and molecular alterations in gliomas have led to the emergence of experimental molecularly targeted therapies. This article summarizes recent progress in the development of targeted therapies for glioma, focusing on emerging molecular targets, including neuropeptide and neurotrophin pathways, glutamate receptors, epigenetic mechanisms and glioma stem cell targets. Recent clinical trials of small molecules and antibodies targeted at growth factor pathways and intracellular signaling cascades are also discussed.
Collapse
Affiliation(s)
- Rafael Roesler
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
42
|
di Tomaso E, Snuderl M, Kamoun WS, Duda DG, Auluck PK, Fazlollahi L, Andronesi OC, Frosch MP, Wen PY, Plotkin SR, Hedley-Whyte ET, Sorensen AG, Batchelor TT, Jain RK. Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. Cancer Res 2011; 71:19-28. [PMID: 21199795 DOI: 10.1158/0008-5472.can-10-2602] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recurrent glioblastomas (rGBM) invariably relapse after initial response to anti-VEGF therapy. There are 2 prevailing hypotheses on how these tumors escape antiangiogenic therapy: switch to VEGF-independent angiogenic pathways and vessel co-option. However, direct evidence in rGBM patients is lacking. Thus, we compared molecular, cellular, and vascular parameters in autopsy tissues from 5 rGBM patients who had been treated with the pan-VEGF receptor tyrosine kinase inhibitor cediranib versus 7 patients who received no therapy or chemoradiation but no antiangiogenic agents. After cediranib treatment, endothelial proliferation and glomeruloid vessels were decreased, and vessel diameters and perimeters were reduced to levels comparable to the unaffected contralateral brain hemisphere. In addition, tumor endothelial cells expressed molecular markers specific to the blood-brain barrier, indicative of a lack of revascularization despite the discontinuation of therapy. Surprisingly, in cediranib-treated GBM, cellular density in the central area of the tumor was lower than in control cases and gradually decreased toward the infiltrating edge, indicative of a change in growth pattern of rGBMs after cediranib treatment, unlike that after chemoradiation. Finally, cediranib-treated GBMs showed high levels of PDGF-C (platelet-derived growth factor C) and c-Met expression and infiltration by myeloid cells, which may potentially contribute to resistance to anti-VEGF therapy. In summary, we show that rGBMs switch their growth pattern after anti-VEGF therapy--characterized by lower tumor cellularity in the central area, decreased pseudopalisading necrosis, and blood vessels with normal molecular expression and morphology--without a second wave of angiogenesis.
Collapse
Affiliation(s)
- Emmanuelle di Tomaso
- Department of Radiation Oncology, Massachusetts General Hospital & Massachusetts Institute of Technology, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Beal K, Abrey LE, Gutin PH. Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: analysis of single-agent and combined modality approaches. Radiat Oncol 2011; 6:2. [PMID: 21214925 PMCID: PMC3025871 DOI: 10.1186/1748-717x-6-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/07/2011] [Indexed: 11/10/2022] Open
Abstract
Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy.
Collapse
Affiliation(s)
- Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Lauren E Abrey
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Philip H Gutin
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| |
Collapse
|
44
|
Narayana A, Kunnakkat SD, Medabalmi P, Golfinos J, Parker E, Knopp E, Zagzag D, Eagan P, Gruber D, Gruber ML. Change in pattern of relapse after antiangiogenic therapy in high-grade glioma. Int J Radiat Oncol Biol Phys 2010; 82:77-82. [PMID: 21163583 DOI: 10.1016/j.ijrobp.2010.10.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Local recurrence is the dominant pattern of relapse in high-grade glioma (HGG) after conventional therapy. The recent use of antiangiogenic therapy has shown impressive radiologic and clinical responses in adult HGG. The preclinical data suggesting increased invasiveness after angiogenic blockade have necessitated a detailed analysis of the pattern of recurrence after therapy. METHODS AND MATERIALS A total of 162 consecutive patients with HGG, either newly diagnosed (n = 58) or with recurrent disease (n = 104) underwent therapy with bevacizumab at 10 mg/kg every 2 weeks and conventional chemotherapy with or without involved field radiotherapy until disease progression. The pattern of recurrence and interval to progression were the primary aims of the present study. Diffuse invasive recurrence (DIR) was defined as the involvement of multiple lobes with or without crossing the midline. RESULTS At a median follow-up of 7 months (range, 1-37), 105 patients had recurrence, and 79 patients ultimately developed DIR. The interval to progression was similar in the DIR and local recurrence groups (6.5 and 6.3 months, p = .296). The hazard risk of DIR increased exponentially with time and was similar in those with newly diagnosed and recurrent HGG (R(2) = 0.957). The duration of bevacizumab therapy increased the interval to recurrence (p < .0001) and improved overall survival (p < .0001). However, the pattern of relapse did not affect overall survival (p = .253). CONCLUSION Along with an increase in median progression-free survival, bevacizumab therapy increased the risk of DIR in HGG patients. The risk of increased invasion with prolonged angiogenic blockade should be addressed in future clinical trials.
Collapse
Affiliation(s)
- Ashwatha Narayana
- Department of Radiation Oncology, New York University Langone Medical Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dai XJ, Jiang WJ, Wang WM, Zhao SJ. Drug or vaccine?: selecting the appropriate treatment for malignant glioma patients. Drugs 2010; 70:1477-86. [PMID: 20687616 DOI: 10.2165/11538040-000000000-00000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Malignant gliomas are the most common and aggressive form of brain tumour. Current combinations of aggressive surgical resection, radiation therapy and chemotherapy regimens do not significantly improve long-term patient survival for these cancers. Therefore, investigative therapies including tumour vaccines have targeted this devastating condition. This article reviews evidence and data on chemotherapy and immunotherapy for a personalized medicine approach in order to enable physicians to select the appropriate treatment for glioma patients. Dendritic cell- and peptide-based therapy for gliomas seems to be safe and without major adverse effects. Gene-modified vaccines have also shown promise in the treatment of malignant gliomas. The concept of 'personalized medicine' is currently important in oncology treatment development. Using a personalized medicine approach, it may be necessary to evaluate the molecular genetic abnormalities in individual patient tumours, and such findings should be the mainstay of immunotherapeutic strategies designed for the individual patient.
Collapse
Affiliation(s)
- Xue-jun Dai
- Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Chamberlain MC. Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas. Cancer 2010; 116:3988-99. [PMID: 20564141 DOI: 10.1002/cncr.25256] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite advances in adjuvant therapy, the prognosis for most patients with high-grade glioma (HGG) is poor, and almost all HGGs have a likelihood of disease recurrence. HGGs are highly vascularized tumors with elevated expression levels of vascular endothelial growth factor (VEGF), an important mediator of angiogenesis. A compelling biologic rationale, a pressing need for improved therapeutics and positive results from studies of bevacizumab in other tumor types, led to the evaluation of bevacizumab in the treatment of HGG. It was demonstrated previously that bevacizumab, which is a humanized monoclonal antibody that targets VEGF, improved outcomes when combined with chemotherapy (most commonly irinotecan) in patients with recurrent HGG; and, on the basis of an improved objective response rate in 2 prospective phase 2 studies, bevacizumab was granted accelerated approval by the US Food and Drug Administration as a single agent in patients with previously treated glioblastoma (GB). Bevacizumab-containing therapy has been associated with manageable, class-specific toxicity; however, severe treatment-related adverse events are observed in a minority of patients. Preliminary data on bevacizumab-based therapy in recurrent anaplastic gliomas, in the frontline treatment of GB, and in additional patient populations are also encouraging. With the goal of addressing unanswered questions regarding the optimal use of bevacizumab, the objective of the current review was to provide a summary of the clinical efficacy and safety data on bevacizumab in patients with HGG, the practical issues surrounding the administration of bevacizumab, and ongoing investigations of bevacizumab in additional brain tumor treatment settings.
Collapse
Affiliation(s)
- Marc C Chamberlain
- Department of Neurology and Neurological Surgery, University of Washington, Seattle, Washington, 98109, USA.
| |
Collapse
|
47
|
Balducci M, Apicella G, Manfrida S, Mangiola A, Fiorentino A, Azario L, D'Agostino GR, Frascino V, Dinapoli N, Mantini G, Albanese A, de Bonis P, Chiesa S, Valentini V, Anile C, Cellini N. Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high-grade gliomas: final report. Strahlenther Onkol 2010; 186:558-64. [PMID: 20936460 DOI: 10.1007/s00066-010-2101-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/01/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE To assess survival, local control and toxicity using fractionated stereotactic conformal radiotherapy (FSCRT) boost and temozolomide in high-grade gliomas (HGGs). PATIENTS AND METHODS Patients affected by HGG, with a CTV(1)(clinical target volume, representing tumor bed ± residual tumor + a margin of 5 mm) ≤ 8 cm were enrolled into this phase II study. Radiotherapy (RT, total dose 6,940 cGy) was administered using a combination of two different techniques: three-dimensional conformal radiotherapy (3D-CRT, to achieve a dose of 5,040 or 5,940 cGy) and FSCRT boost (19 or 10 Gy) tailored by CTV(1)diameter (≤ 6 cm and > 6 cm, respectively). Temozolomide (75 mg/m(2)) was administered during the first 2 or 4 weeks of RT. After the end of RT, temozolomide (150-200 mg/m(2)) was administered for at least six cycles. The sample size of 41 patients was assessed by the single proportion-powered analysis. RESULTS 41 patients (36 with glioblastoma multiforme [GBM] and five with anaplastic astrocytoma [AA]) were enrolled; RTOG neurological toxicities G1-2 and G3 were 12% and 3%, respectively. Two cases of radionecrosis were observed. At a median follow-up of 44 months (range 6-56 months), global and GBM median overall survival (OS) were 30 and 28 months. The 2-year survival rate was significantly better compared to the standard treatment (63% vs. 26.5%; p < 0.00001). Median progression-free survival (PFS) was 11 months, in GBM patients 10 months. CONCLUSION FSCRT boost plus temozolomide is well tolerated and seems to increase survival compared to the standard treatment in patients with HGG.
Collapse
Affiliation(s)
- Mario Balducci
- Department of Radiotherapy, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Unexpected late radiation neurotoxicity following bevacizumab use: a case series. J Neurooncol 2010; 102:485-90. [PMID: 20680396 DOI: 10.1007/s11060-010-0336-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this case series is to report the unexpected occurrence of four cases of late radiation-induced neurotoxicity with bevacizumab use following radiotherapy to the CNS. We retrospectively reviewed the case records of four patients, three with glioblastoma and one with bone metastases secondary to metastatic breast cancer, who were treated with radiotherapy and developed late radiation-induced neurotoxicity following bevacizumab use. Three cases of optic neuropathy in glioblastoma patients and a single case of Brown-Séquard syndrome in the thoracic spine of a patient with metastatic breast cancer are reported. We hypothesize that bevacizumab use following radiotherapy to the CNS may inhibit vascular endothelial growth factor-dependent repair of normal neural tissue, and thus may increase the risk of late radiation neurotoxicity. Phase III data on the safety and efficacy of bevacizumab use with radiation in the setting of glioblastoma is awaited.
Collapse
|
49
|
Thompson G, Mills SJ, Stivaros SM, Jackson A. Imaging of Brain Tumors: Perfusion/Permeability. Neuroimaging Clin N Am 2010; 20:337-53. [DOI: 10.1016/j.nic.2010.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Moustakas A, Kreisl TN. New treatment options in the management of glioblastoma multiforme: a focus on bevacizumab. Onco Targets Ther 2010; 3:27-38. [PMID: 20616955 PMCID: PMC2895775 DOI: 10.2147/ott.s5307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults and carries the poorest prognosis. Despite recent progress in molecular biology, neuro-imaging and neuro-surgical care, the management of patients with GBM continues to harbor significant challenges. Survival after diagnosis is poor even with the most aggressive approach using multimodality therapy. Although the etiology of malignant gliomas is not known, the dependency of tumor growth on angiogenesis has identified this pathway as a promising therapeutic target. Bevacizumab was the first antiangiogenic therapy approved for use in cancer and received accelerated Food and Drug Administration approval for the treatment of recurrent GBM in 2009, the first new drug for this disease in over a decade. This review describes the rationale behind the treatment of GBM with bevacizumab. The pharmacology, efficacy, safety and tolerability of bevacizumab will also be reviewed.
Collapse
Affiliation(s)
- Argirios Moustakas
- National Cancer Institute, Neuro-Oncology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|