1
|
Wang X, Yuan R, Miao L, Li X, Guo Y, Tian H. Protective mechanism of a novel aminothiol compound on radiation-induced intestinal injury. Int J Radiat Biol 2023; 99:259-269. [PMID: 35583501 DOI: 10.1080/09553002.2022.2074163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE With the development of nuclear technology and radiotherapy, the risk of radiation injury has been increasing. Therefore, it is important to find an effective radiation-protective agent. In this study, we designed and synthesized a novel compound called compound 8, of which the radioprotective effect and mechanism were studied. MATERIALS AND METHODS Before being exposed to ionizing radiation, mice were pretreated with compound 8. The 30-day mortality assay, hematoxylin-eosin staining, and immunohistochemistry staining assay were performed to evaluate the anti-radiation effect of the compound 8. TUNEL and immunofluorescence assays were conducted to study the anti-radiation mechanism of compound 8. RESULTS Compared to the IR + vehicle group, the 30-day survival rate of mice treated with 25 mg/kg of compound 8 was significantly improved after 8 Gy total body irradiation. In the morphological study of the small intestine, we found that compound 8 could maintain crypt-villus structures in the irradiated mice. Further immunohistochemical staining displayed that compound 8 could improve the survival of Lgr5+ cells, ki67+ cells, and lysozyme+ cells. The results of TUNEL and immunofluorescence assays showed that compound 8 could decrease the expression of apoptosis-related caspase-8/-9, γ-H2AX, Bax, and p53. CONCLUSIONS These results indicate that compound 8 exerts its effects by maintaining structure and function of small intestine. It also reduces DNA damage, promotes crypt proliferation and differentiation. Moreover, it may enhance the anti-apoptotic ability of small intestinal tissue by inhibiting the activation of p53 and blocking the caspase cascade reaction. Compound 8 can protect the intestinal tract from post-radiation damage, it is thus a new and effective protective agent of radiation.
Collapse
Affiliation(s)
- Xinxin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| |
Collapse
|
2
|
Zhang J, Tan W, Zhao P, Mi Y, Guo Z. Facile synthesis, characterization, antioxidant activity, and antibacterial activity of carboxymethyl inulin salt derivatives. Int J Biol Macromol 2022; 199:138-149. [PMID: 34973272 DOI: 10.1016/j.ijbiomac.2021.12.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
A series of novel carboxymethyl inulin derivatives bearing thiosemicarbazide salts, aminoguanidine salts, and aniline salts were prepared via a facile method and employed to evaluate in vitro antioxidant activity and antibacterial activity. Their structures were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The characterization results confirmed the successful synthesis of carboxymethyl inulin salt derivatives. The in vitro antioxidant activity evaluation results presented a significant improved superoxide radical scavenging ability, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, and reducing ability of carboxymethyl inulin salt derivatives as compared to inulin and carboxymethyl inulin. In particular, the series of carboxymethyl inulin derivatives containing thiosemicarbazide salts and aminoguanidine salts showed remarkable free radical scavenging ability and reducing ability. Moreover, the carboxymethyl inulin derivatives containing thiosemicarbazide salts and aniline salts displayed potential antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. The cytotoxicity assay was also carried out on L929 cells by CCK-8 method, and all samples showed weak cytotoxicity. Furthermore, hemolysis results showed no hemolytic activity of most prepared inulin derivatives. In summary, the inulin derivatives containing thiosemicarbazide salts exhibited outstanding antioxidant activity, antibacterial activity, and biocompatibility, and the all-inclusive properties highlighted their potential use in food and medical applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Pengzhuo Zhao
- Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Cheng Y, Dong Y, Hou Q, Wu J, Zhang W, Tian H, Li D. The protective effects of XH-105 against radiation-induced intestinal injury. J Cell Mol Med 2019; 23:2238-2247. [PMID: 30663222 PMCID: PMC6378229 DOI: 10.1111/jcmm.14159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Radiation-induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation enteritis in the clinic. We designed and synthesized a new compound named XH-105, which is expected to cleave into polyphenol and aminothiol in vivo to mitigate radiation injury. In the following study, we describe the beneficial effects of XH-105 against radiation-induced intestinal injury. C57BL/6J mice were treated by gavage with XH-105 1 hour before total body irradiation (TBI), and the survival rate was monitored. Histological changes were examined, and survival of Lgr5+ intestinal stem cells Ki67+ cells, villi+ enterocytes and lysozymes was determined by immunohistochemistry. DNA damage and cellular apoptosis in intestinal tissue were also evaluated. Compared to vehicle-treated mice after TBI, XH-105 treatment significantly enhanced the survival rate, attenuated structural damage of the small intestine, decreased the apoptotic rate, reduced DNA damage, maintained cell regeneration and promoted crypt proliferation and differentiation. XH-105 also reduced the expression of Bax and p53 in the small intestine. These data suggest that XH-105 is beneficial for the protection of radiation-induced intestinal injury by inhibiting the p53-dependent apoptosis signalling pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Center for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Qinlian Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jing Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wei Zhang
- Center for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Li Y, Kong S, Yang F, Xu W. Protective Effects of 2-Amino-5,6-dihydro-4 H-1,3-thiazine and Its Derivative against Radiation-Induced Hematopoietic and Intestinal Injury in Mice. Int J Mol Sci 2018; 19:ijms19051530. [PMID: 29883417 PMCID: PMC5983608 DOI: 10.3390/ijms19051530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR) acts as an external stimulating factor, when it acts on the body, it will activate NF- κ B and cause the up-regulation of inducible nitric oxide synthase (iNOS) and induce a large amount of nitric oxide (NO) production. NO and other reactive nitrogen and oxygen species (RNS and ROS) can cause damage to biological molecules and affect their physiological functions. Our study investigated the protective role of 2-amino-5,6-dihydro-4H-1,3-thiazine hydrobromide (2-ADT) and 2-acetylamino-5,6-dihydro-4H-1,3-thiazine hydrobromide (2-AADT), two nitric oxide synthase inhibitors, against radiation-induced hematopoietic and intestinal injury in mice. Pretreatment with 2-ADT and 2-AADT improved the survival of mice exposed to a lethal dose of radiation, especially, the survival rate of the 2-ADT 20 mg/kg group was significantly higher than that of the vehicle group (p < 0.001). Our findings indicated that the radioprotective actions of 2-ADT and 2-AADT are achieved via accelerating hematopoietic system recovery, decreasing oxidative and nitrosative stress by enhancing the antioxidant defense system and reducing NO as well as peroxynitrite (ONOO − ) content, and mitigating the radiation-induced DNA damage evaluated by comet assay. These results suggest that 2-ADT and 2-AADT may have great application potential in ameliorating the damages of radiotherapy.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Shaofan Kong
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Fujun Yang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Wenqing Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
5
|
Zhang H, Yan H, Zhou X, Wang H, Yang Y, Zhang J, Wang H. The protective effects of Resveratrol against radiation-induced intestinal injury. Altern Ther Health Med 2017; 17:410. [PMID: 28814292 PMCID: PMC5559783 DOI: 10.1186/s12906-017-1915-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022]
Abstract
Background Intestinal injury is a potential cause of death after high-dose radiation exposure. The aim of the present study was to investigate the protective effects of resveratrol against radiation-induced small intestine injury. Methods C57BL/6 N mice were irradiated and treated with resveratrol and/or Ex527 (a potent Sirt1 inhibitor), and subsequent examining intestinal morphological changes, and crypt cell apoptosis. Then, the expression and enzyme activity of SOD2 in the small intestine were examined. Furthermore, Sirt1 and acetylated p53 expression was analysed. Results Compared to the vehicle control, treatment with resveratrol improved intestinal morphology, decreased apoptosis of crypt cells, maintained cell regeneration, and ameliorated SOD2 expression and activity. Resveratrol also regulated Sirt1 and acetylated p53 expression perturbed by irradiation in the small intestine. The protective effect of resveratrol against ionizing radiation induced small intestine injury was significantly inhibited by Ex527. Conclusion Our results suggest that resveratrol decreases the effects of radiation on intestinal injury at least partly via activation of Sirt1. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1915-9) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Kalita B, Ranjan R, Singh A, Yashavarddhan MH, Bajaj S, Gupta ML. A Combination of Podophyllotoxin and Rutin Attenuates Radiation Induced Gastrointestinal Injury by Negatively Regulating NF-κB/p53 Signaling in Lethally Irradiated Mice. PLoS One 2016; 11:e0168525. [PMID: 28036347 PMCID: PMC5201299 DOI: 10.1371/journal.pone.0168525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022] Open
Abstract
Development of an effective radio protector to minimise radiation-inflicted damages have largely failed owing to inherent toxicity of most of the agents examined so far. This study is centred towards delivering protection to lethally irradiated mice by pre-administration of a safe formulation G-003M (combination of podophyllotoxin and rutin) majorly through regulation of inflammatory and cell death pathways in mice. Single intramuscular dose of G-003M injected 60 min prior to 9 Gy exposure rescued 89% of whole body lethally irradiated C57BL/6J mice. Studies have revealed reduction in radiation induced reactive oxygen species (ROS), nitric oxide (NO) generation, prostaglandin E2 (PGE2) levels and intestinal apoptosis in G-003M pre-treated mice intestine. Restricted nuclear translocation of redox-sensitive Nuclear factor-κB (NF-κB) and subsequent downregulation of cyclo-oxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS; EC 1.14.13.39) and tumor necrosis factor (TNF-α) levels demonstrated the anti-inflammatory effect that G-003M exerts. Support to early hematopoietic recovery was exhibited through G-003M mediated induction of granulocyte colony stimulating factor (G-CSF) and interleukin (IL-6) levels in lethally irradiated mice. Considerable attenuation in radiation induced morphological damage to the intestinal villi, crypts and mucosal layers was observed in G-003M pre-treated mice. Additionally, our formulation did not reduce the sensitivity of tumor tissue to radiation. Altogether, these results suggest that G-003M ameliorates the deleterious effects of radiation exposure by minimising ROS and NO generation and effectively regulating inflammatory and cell death pathways. Mechanism of protection elucidated in the current study demonstrates that G-003M can be used as a safe and effective radio protective agent in radiotherapy for human application.
Collapse
Affiliation(s)
- Bhargab Kalita
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Rajiv Ranjan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Abhinav Singh
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - M. H. Yashavarddhan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Sania Bajaj
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
| | - Manju Lata Gupta
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Brig.S.K Mazumdar Marg, Delhi, INDIA
- * E-mail:
| |
Collapse
|
7
|
Ilnytska K, Datsyuk L, Novikov V, Denysenko N, Sklyarov A. The influence of 1.4-naphtoquinone derivative and of vitamin E on nitroso-oxidative processes in digestive organ mucous membranes under the conditions of cyclooxygenase blockage, and against the background of low intensity X-ray irradiation. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2016. [DOI: 10.1515/cipms-2016-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In recent years, the influence of chronic low intensity irradiation on the human body has increased. This is mediated not only by the consequences of technogenic catastrophies, but also due to application of radiation therapy of of radiation usage in industry. Hence, we investigated the influence of 1.4-naphtoquinone and vitamin Е on the nitroso-oxidative processes in the digestive organ mucous membranes, while affected by low intensity X-ray irradiation alone and in combination with the experimental blockage of COX, in rats. Our results show that X-ray irradiation of a total dose of 20 sGy during twenty days, induced an increase of the oxidative processes, as well as an increase in the activity of iNOS and myeloperoxidase in the mucous membranes of the stomach, small and large intestine. Both the effect of vitamin E and a 1.4-naphtoquinone derivative on the background of low intensity X-ray irradiation, and under the simultaneous effect of X-ray irradiation and COX blockage, brought about a decrease of the level of oxidative processes and of iNOS activity, whereas MPO activity increased. We also noted that the effect of vitamin E on the background of X-ray irradiation more significantly increased both the activity of SOD and catalase, when compared to the induced effect of the 1.4-naphtoquinone derivative. Under the conditions of COX-1/COX-2 blockage (as induced by way of indomethacin administration), against the background of X-ray irradiation, the content of TBA-active products (in the stomach and small intestine mucous membranes), the level of iNOS activity and the sum of nitrites and nitrates, were lower than that of independent effect. Тaking into account the prominent antioxidant and anti-inflammatory attributes of 1.4-naphtoquinone-3-[3-(3.5-di-tret-butyl-4-hydroxy-phenyl)-1.4-dihydronaphtalene-2-aminoil] butyrate, when compared to the effect of sole administration of vitamin E, both under the conditions of X-ray irradiation alone, and the simultaneous effect of X-ray irradiation and COX blockage, this derivative may be considered suitable as a perspective radiprotectant.
Collapse
Affiliation(s)
- Khrystyna Ilnytska
- Danylo Halytsky Lviv National Medical University, 69 Pekarska, 79010 Lviv, Ukraine
| | | | | | - Nataliya Denysenko
- Danylo Halytsky Lviv National Medical University, 69 Pekarska, 79010 Lviv, Ukraine
| | - Alexandr Sklyarov
- Danylo Halytsky Lviv National Medical University, 69 Pekarska, 79010 Lviv, Ukraine
| |
Collapse
|
8
|
Ekici K, Temelli O, Parlakpinar H, Samdanci E, Polat A, Beytur A, Tanbek K, Ekici C, Dursun IH. Beneficial effects of aminoguanidine on radiotherapy-induced kidney and testis injury. Andrologia 2015; 48:683-92. [DOI: 10.1111/and.12500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- K. Ekici
- Department of Radiation Oncology; Medical Faculty; Inonu University; Malatya Turkey
| | - O. Temelli
- Department of Radiation Oncology; Medical Faculty; Inonu University; Malatya Turkey
| | - H. Parlakpinar
- Department of Pharmacology; Medical Faculty; Inonu University; Malatya Turkey
| | - E. Samdanci
- Department of Pathology; Medical Faculty; Inonu University; Malatya Turkey
| | - A. Polat
- Department of Physiology; Medical Faculty; Inonu University; Malatya Turkey
| | - A. Beytur
- Department of Urology; Medical Faculty; Inonu University; Malatya Turkey
| | - K. Tanbek
- Department of Physiology; Medical Faculty; Inonu University; Malatya Turkey
| | - C. Ekici
- Department of Medical Biology and Genetics; Medical Faculty; Inonu University; Malatya Turkey
| | - I. H. Dursun
- Department of Medical Oncology; Medical Faculty; Inonu University; Malatya Turkey
| |
Collapse
|
9
|
Huang EY, Wang FS, Chen YM, Chen YF, Wang CC, Lin IH, Huang YJ, Yang KD. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation. Oncotarget 2015; 5:9756-69. [PMID: 25230151 PMCID: PMC4259435 DOI: 10.18632/oncotarget.2386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage.
Collapse
Affiliation(s)
- Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan. Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taiwan. School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taiwan
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taiwan. Department of Medical Research, Niao-Sung District, Kaohsiung 833, Taiwan. Center for Laboratory Animals, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Yu-Min Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Yi-Fan Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Chung-Chi Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - I-Hui Lin
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Yu-Jie Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung District, Kaohsiung 833, Taiwan
| | - Kuender D Yang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taiwan. Department of Medical Research, Show Chwan Memorial Hospital in Chang Bing, Chang Bing Industrial Center, Lu-Kang, Changhua 505, Taiwan. Institute of Clinical Medicine, National Yang Ming University, Taiwan
| |
Collapse
|
10
|
Sugita S, Inomata M, Kono Y, Shiroshita H, Etoh T, Shiraishi N, Kitano S. Effect of the new synthetic vitamin E derivative ETS-GS on radiation enterocolitis symptoms in a rat model. Oncol Lett 2013; 6:1229-1233. [PMID: 24179500 PMCID: PMC3813668 DOI: 10.3892/ol.2013.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/28/2013] [Indexed: 11/07/2022] Open
Abstract
Radiation enterocolitis is a severe adverse event that occurs after radiotherapy for malignant abdominal tumors. In this study, the therapeutic effects of ETS-GS, a novel vitamin E derivative with antioxidative and anti-inflammatory abilities, were examined in a rat model of radiation enterocolitis. The radiation enterocolitis model was created by irradiation of male rats with a single dose of 10 Gy. ETS-GS was administered subcutaneously (10 mg/kg/day) for five consecutive days from two days prior to irradiation. The animals were sacrificed three days after irradiation; following which, ileal tissue samples were analyzed for macroscopic and histological findings, presence of apoptosis, degree of oxidative stress and inflammation. In the irradiated group, severe erosion was observed in the small intestine in addition to necrosis of the mucosal layer, swelling and invasion of inflammatory cells of the submucosal layer, and shortening of the crypts. In irradiated rats that received ETS-GS, mucosal injury in the small intestine was milder compared with that of irradiated rats that received no ETS-GS. In addition, ETS-GS decreased apoptosis in the small intestine and reduced the activity of myeloperoxidase and malondialdehyde, which are markers for inflammation and oxidative stress. ETS-GS with antioxidant activity has a therapeutic effect on the symptoms of radiation enterocolitis in a rat model.
Collapse
Affiliation(s)
- Satoshi Sugita
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Hong CW, Kim YM, Pyo H, Lee JH, Kim S, Lee S, Noh JM. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage. JOURNAL OF RADIATION RESEARCH 2013; 54:1036-1042. [PMID: 23704776 PMCID: PMC3823786 DOI: 10.1093/jrr/rrt066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N(ω)-nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N(6)-(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage.
Collapse
Affiliation(s)
- Chang-Won Hong
- Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, P.O. Box 78-503, Chumok-dong, Yuseong-gu, Daejeon, 305-878, Republic of Korea
- Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, #1 Okcheon-dong, Chuncheon, 200-702, Republic of Korea
| | - Young-Mee Kim
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Joon-Ho Lee
- Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, P.O. Box 78-503, Chumok-dong, Yuseong-gu, Daejeon, 305-878, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, #43 Yeokgok 2-dong, Wonmi-gu, Bucheon, 420-743, Republic of Korea
| | - Suwan Kim
- Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, P.O. Box 78-503, Chumok-dong, Yuseong-gu, Daejeon, 305-878, Republic of Korea
- Department of Elementary Special Education, College of Social Sciences, Joongbu University, Majeon-ri, Chubu-myeon, Geumsan, 312-702, Republic of Korea
| | - Sunyoung Lee
- Department of Radiation Oncology, Konyang University Hospital, School of Medicine, Konyang University, #685 Gasuwon-dong, Seo-gu, Daejeon, 302-718, Republic of Korea
| | - Jae Myoung Noh
- Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, P.O. Box 78-503, Chumok-dong, Yuseong-gu, Daejeon, 305-878, Republic of Korea
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| |
Collapse
|
12
|
Babicová A, Havlínová Z, Hroch M, Rezáčová M, Pejchal J, Vávrová J, Chládek J. In vivo study of radioprotective effect of NO-synthase inhibitors and acetyl-L-carnitine. Physiol Res 2013; 62:701-10. [PMID: 23869893 DOI: 10.33549/physiolres.932541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective effect of two nitric oxide synthase inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.p.) and aminoguanidine (AG, 400 mg/kg i.p.), and an antioxidant acetyl-L-carnitine (ALC, 250 mg/kg i.p., once daily for five days) against radiation-induced damage in Wistar rats. Blood samples were collected 6 h after whole-body irradiation with 8 Gy. Plasma concentrations of nitrite+nitrate (NO(x)) and malondialdehyde (MDA) were measured by high-performance liquid chromatography. A single injection of L-NAME one hour before exposure effectively prevented the radiation-induced elevation of plasma NO(x) and it reduced 2.6-fold the risk for death during the subsequent 30-day period. Pretreatment with ALC prevented the radiation-induced increase in plasma MDA and it had similar effect on mortality as L-NAME did. Presumably due to its short half-life, the partially iNOS-selective inhibitor and antioxidant AG given in a single dose before exposure did not attenuate MDA and NO(x) and it failed to significantly improve the 30-day survival. In conclusion, pretreatment with both the nonspecific NOS inhibitor L-NAME and the antioxidant ALC markedly reduce mortality to radiation sickness in rats. The radioprotective effect may be directly related to effective attenuation of the radiation-induced elevation of NO production by L-NAME and of oxidative stress by ALC.
Collapse
Affiliation(s)
- A Babicová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
13
|
Su WH, Chuang PC, Huang EY, Yang KD. Radiation-induced increase in cell migration and metastatic potential of cervical cancer cells operates via the K-Ras pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:862-71. [PMID: 22138581 DOI: 10.1016/j.ajpath.2011.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 09/22/2011] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
Radiotherapy is a well established treatment for cervical cancer, the second most common cancer in women worldwide. However, metastasis often circumvents the efficacy of radiotherapy. This study was conducted to elucidate the molecular mechanism of radioresistance-associated metastatic potential of cervical cancer cells. We established three radioresistant cervical cancer cell lines by exposure of cells to a sublethal dose of radiation and screened for lines that exhibited an increased migration phenotype for at least 6 months before undertaking mechanistic studies. Radiation-associated metastatic potential was evaluated using a wound-healing assay, time-lapse recording, and cell locomotion into the lungs of BALB/c nude mice. The radioresistant C33A and CaSki cell lines, but not the radioresistant HeLa cell line, exhibited significantly increased cell migration and wound healing than did wild-type cells. Furthermore, K-Ras played a prometastatic role via the activation of c-Raf/p38, whereas interference of those mediators via either RNA interference-mediated knockdown or the use of chemical inhibitors substantially reversed the radioresistance-associated increase in cell migration. Clinical examination further showed the relative up-regulation of the K-Ras/c-Raf/p38 pathway in locally recurring tumors and distant metastases compared with in the primary cervical tumor. These findings demonstrate that a sublethal dose of radiation can enhance the metastatic potential of human cervical cancer cells via K-Ras/c-Raf/p38 signaling, highlighting the potential development of specific inhibitors for reducing metastatic potential during radiotherapy.
Collapse
Affiliation(s)
- Wen-Hong Su
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
14
|
Babicova A, Havlinova Z, Pejchal J, Tichy A, Rezacova M, Vavrova J, Chladek J. Early changes in L-arginine-nitric oxide metabolic pathways in response to the whole-body gamma irradiation of rats. Int J Radiat Biol 2011; 87:1067-73. [PMID: 21756062 DOI: 10.3109/09553002.2011.595873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Nitric oxide (NO), a reactive radical, is formed in higher amounts from L-arginine by inducible NO synthase (iNOS) during early response to ionizing radiation presumably as a part of signal transduction pathways. This study investigated the changes in L-arginine-NO metabolic pathways within a 24-hour period after whole-body gamma irradiation of rats with the range of low to supra-lethal doses. MATERIALS AND METHODS Young adult female Wistar rats received either 0-50 Gy whole-body irradiation or an intraperitoneal injection of bacterial lipopolysaccharide (LPS, 10 mg/kg). Exhaled NO was monitored using chemiluminiscence, nitrite + nitrate (NO(x)) and L-arginine were assayed by high-performance liquid chromatography, and expression of iNOS was determined using Western blot. RESULTS Irradiation resulted in a dose-dependent increase of plasma NO(x) to maximum levels which were 4-fold higher compared to controls (p < 0.001). The NO(x) levels increased less in the bronchoalveolar lavage fluid (BAL) (1.7-fold, p < 0.001) and liver homogenate (2.5-fold, p < 0.05), respectively, and were dose-independent. Exhaled NO, lung NO(x), plasma and BAL L-arginine, and the expression of iNOS in lung and liver tissues of irradiated rats and controls were similar. LPS caused a considerable increase (p < 0.001) in exhaled NO (61-fold), NO(x) levels (plasma 34-fold, BAL 6-fold, lung 5-fold, liver 4-fold), and in iNOS expression, respectively. CONCLUSION In contrast to the LPS treatment of rats, the radiation-induced changes in L-arginine-NO metabolic pathways are modest, particularly in the airways and lungs. Noninvasive measurement of exhaled NO within a 24-h period following the exposure of rats to ionizing radiation has no value for biodosimetry.
Collapse
Affiliation(s)
- Andrea Babicova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Injury to the small bowel from ionizing radiation occurs commonly in patients undergoing cancer therapy and less commonly in instances of accidental radiation overexposure. Several lines of evidence now suggest that dynamic interactions between the host's enteric microbiota and innate immune system are important in modulating the intestinal response to radiation. Here, we will review recent developments in the area of acute radiation enteropathy and examine the current state of knowledge regarding the impact of host-microbial interactions in the process. RECENT FINDINGS There is promise in the development and testing of new clinical biomarkers including serum citrulline. Toll-like receptor agonists and innate immune system signaling pathways including nuclear factor-kappa B profoundly alter intestinal epithelial cell apoptosis and crypt survival after radiation exposure. Germ-free conditions, probiotics and antibiotics are each identified as modifiers of disease development and course. A human study suggested that luminal microbiota composition may influence the host's intestinal response to radiation and may change in those developing postradiation diarrhea. SUMMARY New knowledge implies that investigations aimed at deciphering the microbiome-host interactions before and after small bowl radiation injury may eventually allow prediction of disease course and offer opportunities for the development of novel therapeutic or prophylactic strategies.
Collapse
|