1
|
Webster A, Appelt A, Eminowicz G. Image-Guided Radiotherapy for Pelvic Cancers: A Review of Current Evidence and Clinical Utilisation. Clin Oncol (R Coll Radiol) 2020; 32:805-816. [DOI: 10.1016/j.clon.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
|
2
|
Sabbagh A, Jacobs C, Cooke R, Chu KY, Ng SM, Strauss VY, Virdee PS, Hawkins MA, Aznar MC, Muirhead R. Is There a Role for an 18F-fluorodeoxyglucose-derived Biological Boost in Squamous Cell Anal Cancer? Clin Oncol (R Coll Radiol) 2019; 31:72-80. [PMID: 30583927 DOI: 10.1016/j.clon.2018.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
AIMS To investigate the potential role for a biological boost in anal cancer by assessing whether subvolumes of high 18F-fluorodeoxyglucose (FDG) avidity, identified at outset, are spatially consistent during a course of chemoradiotherapy (CRT). MATERIALS AND METHODS FDG-positron emission tomography (FDG-PET) scans from 21 patients enrolled into the ART study (NCT02145416) were retrospectively analysed. In total, 29 volumes including both primary tumours and involved nodes >2 cm were identified. FDG-PET scans were carried out before treatment and on day 8 or 9 of CRT. FDG subvolumes were created using a percentage of maximum FDG avidity at thresholds of 34%, 40%, 50%, on the pre-treatment scans, and 70% and 80% on the subsequent scans. Both FDG-PET scans were deformably registered to the planning computed tomography scan. The overlap fraction and the vector distance were calculated to assess spatial consistency. FDG subvolumes for further investigation had an overlap fraction >0.7, as this has been defined in previous publications as a 'good' correlation. RESULTS The median overlap fractions between the diagnostic FDG-PET subvolumes 34%, 40% and 50% of maximum standardised uptake value (SUVmax) and subsequent FDG-PET subvolumes of 70% of SUVmax were 0.97, 0.92 and 0.81. The median overlap fraction between the diagnostic FDG-PET subvolumes 34%, 40% and 50% and subsequent FDG-PET subvolumes of 80% were 1.00, 1.00 and 0.92. The median (range) vector distance values between diagnostic FDG-PET subvolumes 34%, 40% and 50% and subsequent FDG-PET subvolumes of 80% were 0.74 mm (0.19-2.94) 0.74 mm (0.19-3.39) and 0.71 mm (0.2-3.29), respectively. Twenty of 29 volumes (69.0%) achieved a threshold > 0.7 between the FDG 50% subvolume on the diagnostic scan and the FDG 80% subvolume on the subsequent scan. CONCLUSION FDG-avid subvolumes identified at baseline were spatially consistent during a course of CRT treatment. The subvolume of 50% of SUVmax on the pre-treatment scan could be considered as a potential target for dose escalation.
Collapse
Affiliation(s)
- A Sabbagh
- Department of Oncology, Oxford University Hospitals Trust, Oxford, UK
| | - C Jacobs
- Department of Oncology, Oxford University Hospitals Trust, Oxford, UK
| | - R Cooke
- Department of Oncology, Oxford University Hospitals Trust, Oxford, UK; CRUK MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - K-Y Chu
- Department of Oncology, Oxford University Hospitals Trust, Oxford, UK; CRUK MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - S M Ng
- Oncology Clinical Trials Office, Department of Oncology, University of Oxford, Oxford, UK
| | - V Y Strauss
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - P S Virdee
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - M A Hawkins
- CRUK MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - M C Aznar
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Muirhead
- Department of Oncology, Oxford University Hospitals Trust, Oxford, UK.
| |
Collapse
|
3
|
Masson I, Delpon G, Vendrely V. [Image-guided radiotherapy contribution and patient setup for anorectal cancer treatment]. Cancer Radiother 2018; 22:622-630. [PMID: 30143462 DOI: 10.1016/j.canrad.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/27/2018] [Indexed: 01/24/2023]
Abstract
Intensity-modulated radiation therapy is recommended in anal squamous cell carcinoma treatment and is increasingly used in rectal cancer. It adapts the dose to target volumes, with a high doses gradient. Intensity-modulated radiation therapy allows to reduce toxicity to critical normal structures and to consider dose-escalation studies or systemic treatment intensification. Image-guided radiation therapy is a warrant of quality for intensity-modulated radiation therapy, especially for successful delivery of the dose as planned. There is no recommended international or national anorectal cancer image-guided radiation therapy protocol currently available. Dose-escalation trials or expert opinions about intensity-modulated/image-guided radiation therapy good practice guidelines recommend daily volumetric imaging throughout the treatment or during the five first fractions and weekly thereafter as a minimum. Image-guided radiation therapy allows to reduce margins related to patient setup errors. Internal margin, related to the internal organ motion, needs to be adapted according to short- or long-course radiotherapy, gender, rectal location; it can be higher than current recommended planning target volume margins, particularly in the upper and anterior part of mesorectum, which has the most significant movement. Image-guided radiation therapy based on volumetric imaging allows to take target volume shrinkage into account and to develop adaptive strategies, in particular for mesorectum shrinkage during rectal cancer treatment. Lastly, the emergence of new image-guided radiation therapy technologies including MRI (which plays a major role in pelvic tumours assessment and diagnosis) opens up interesting perspectives for adaptive radiotherapy, taking into account both organs' movements and tumour shrinkage.
Collapse
Affiliation(s)
- I Masson
- Département de radiothérapie, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France.
| | - G Delpon
- Département de physique médicale, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - V Vendrely
- Service de radiothérapie, hôpital Haut-Lévêque, CHU de Bordeaux, avenue de Magellan, 33604 Pessac, France
| |
Collapse
|
4
|
Klausner G, Blais E, Jumeau R, Biau J, de Meric de Bellefon M, Ozsahin M, Zilli T, Miralbell R, Thariat J, Troussier I. Management of locally advanced anal canal carcinoma with intensity-modulated radiotherapy and concurrent chemotherapy. Med Oncol 2018; 35:134. [PMID: 30128811 DOI: 10.1007/s12032-018-1197-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023]
Abstract
The best curative option for locally advanced (stages II-III) squamous-cell carcinomas of the anal canal (SCCAC) is concurrent chemo-radiotherapy delivering 36-45 Gy to the prophylactic planning target volume with an additional boost of 14-20 Gy to the gross tumor volume with or without a gap-period between these two sequences. Although 3-dimensional conformal radiotherapy led to suboptimal tumor coverage because of field junctions, this modality remains a standard of care. Recently, intensity-modulated radiotherapy (IMRT) techniques improved tumor coverage while decreasing doses delivered to organs at risk. Sparing healthy tissues results in fewer severe acute toxicities. Consequently, IMRT could potentially avoid a gap-period that may increase the risk of local failure. Furthermore, these modalities reduce severe late toxicities of the gastrointestinal tract as well as better functional conservation of anorectal sphincter. This report aims to critically review contemporary trends in the management of locally advanced SCCAC using IMRT and concurrent chemotherapy.
Collapse
Affiliation(s)
- Guillaume Klausner
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Eivind Blais
- Radiation Oncology Department, Centre Hospitalier Universitaire (CHU) La Pitié-Salpêtrière Charles-Foix, Sorbonne University, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Raphaël Jumeau
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Julian Biau
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Mailys de Meric de Bellefon
- Radiation Oncology Department, Institut du Cancer de Montpellier Val d'Aurelle, Montpellier University, 208 Avenue des Apothicaires, 34298, Montpellier, France
| | - Mahmut Ozsahin
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Thomas Zilli
- Radiation Oncology Department, Hôpitaux Universitaires de Genève (HUG), Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Raymond Miralbell
- Radiation Oncology Department, Hôpitaux Universitaires de Genève (HUG), Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Juliette Thariat
- Radiation Oncology Department, François Baclesse Center/ARCHADE, Normandy University, 3 Avenue du Général Harris, 14000, Caen, France
| | - Idriss Troussier
- Radiation Oncology Department, Hôpitaux Universitaires de Genève (HUG), Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland.
| |
Collapse
|
5
|
Garibaldi C, Fodor C, Riva G, Rojas DP, Dicuonzo S, Pace E, Fanetti G, De Marco P, Dell'acqua V, Marvaso G, Leonardi MC, Lazzari R, Cattani F, Cremonesi M, Orecchia R, Jereczek-Fossa BA. Cone-beam CT-based inter-fraction localization errors for tumors in the pelvic region. Phys Med 2018. [PMID: 29519410 DOI: 10.1016/j.ejmp.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To evaluate inter-fraction tumor localization errors (TE) in the RapidArc® treatment of pelvic cancers based on CBCT. Appropriate CTV-to PTV margins in a non-IGRT scenario have been proposed. METHODS Data of 928 patients with prostate, gynecological, and rectum/anal canal cancers were retrospectively analyzed to determine systematic and random localization errors. Two protocols were used: daily online IGRT (d-IGRT) and weekly IGRT. The latter consisted in acquiring a CBCT for the first 3 fractions and subsequently once a week. TE for patients who underwent d-IGRT protocol were calculated using either all CBCTs or the first 3. RESULTS The systematic (and random) TE in the AP, LL, and SI direction were: for prostate bed 2.7(3.2), 2.3(2.8) and 1.9(2.2) mm; for prostate 4.2(3.1), 2.9(2.8) and 2.3(2.2) mm; for gynecological 3.0(3.6), 2.4(2.7) and 2.3(2.5) mm; for rectum 2.8(2.8), 2.4(2.8) and 2.3(2.5) mm; for anal canal 3.1(3.3), 2.1(2.5) and 2.2(2.7) mm. CTV-to-PTV margins determined from all CBCTs were 14 mm in the AP, 10 mm in the LL and 9-9.5 mm in the SI directions for the prostate and the gynecological groups and 9.5-10.5 mm in AP, 9 mm in LL and 8-10 mm in the SI direction for the prostate bed and the rectum/anal canal groups. If assessed on the basis of the first 3 CBCTs, the calculated CTV-to-PTV margins were slightly larger. CONCLUSIONS without IGRT, large CTV-to-PTV margins up to 15 mm are required to account for inter-fraction tumor localization errors. Daily IGRT should be used for all hypo-fractionated treatments to reduce margins and avoid increased toxicity to critical organs.
Collapse
Affiliation(s)
| | - Cristiana Fodor
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Giulia Riva
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Damaris Patricia Rojas
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Samantha Dicuonzo
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Elisa Pace
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Giuseppe Fanetti
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Paolo De Marco
- Medical Physic Unit, European Institute of Oncology, Milano, Italy
| | - Veronica Dell'acqua
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | | | - Roberta Lazzari
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Federica Cattani
- Medical Physic Unit, European Institute of Oncology, Milano, Italy
| | - Marta Cremonesi
- Radiation Research Unit, European Institute of Oncology, Milano, Italy
| | - Roberto Orecchia
- Scientific Director, European Institute of Oncology, Milano, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| |
Collapse
|
6
|
Comparison of Image-Guided Intensity-Modulated Radiotherapy and Low-dose Rate Brachytherapy with or without External Beam Radiotherapy in Patients with Localized Prostate Cancer. Sci Rep 2018; 8:10538. [PMID: 30002393 PMCID: PMC6043516 DOI: 10.1038/s41598-018-28730-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
To compare the outcome of low-dose rate brachytherapy (LDR-BT) and image-guided intensity-modulated radiotherapy (IG-IMRT) for localized prostate cancer, we examined 488 LDR-BT and 269 IG-IMRT patients. IG-IMRT treated older and advanced disease with more hormonal therapy than LDR-BT, which excluded T3b–T4 tumor and initial PSA > 50 ng/ml. The actuarial five-year biochemical failure-free survival rate was 88.7% and 96.7% (p = 0.0003) in IG-IMRT and LDR-BT, respectively; it was 88.2% (85.1% for IG-IMRT and 94.9% for LDR-BT, p = 0.0578) for the high-risk group, 95.2% (91.6% and 97.0%, p = 0.3361) for the intermediate IG-IMRT and 96.8% (95.7% and 97%, p = 0.8625) for the low-risk group. Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. IPTW showed a statistically significant difference between LDR-BT and IG-IMRT in high risk (p = 0.0009) and high risk excluding T3-4/initial PSA > 50 ng/ml group (p = 0.0073). IG-IMRT showed more gastrointestinal toxicity (p = 0.0023) and less genitourinary toxicity (p < 0.0001) than LDR-BT. LDR-BT and IG-IMRT showed equivocal outcome in low- and intermediate-risk groups. For selected high-risk patients, LDR-BT showed more potential to improve PSA control rate than IG-IMRT.
Collapse
|
7
|
Brooks CJ, Bernier L, Hansen VN, Tait DM. Target volume motion during anal cancer image guided radiotherapy using cone-beam computed tomography. Br J Radiol 2018; 91:20170654. [PMID: 29393674 PMCID: PMC6190785 DOI: 10.1259/bjr.20170654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Literature regarding image-guidance and interfractional motion of the anal canal (AC) during anal cancer radiotherapy is sparse. This study investigates interfractional AC motion during anal cancer radiotherapy. METHODS Bone matched cone beam CT (CBCT) images were acquired for 20 patients receiving anal cancer radiotherapy allowing population systematic and random error calculations. 12 were selected to investigate interfractional AC motion. Primary anal gross tumour volume and clinical target volume (CTVa) were contoured on each CBCT. CBCT CTVa volumes were compared to planning CTVa. CBCT CTVa volumes were combined into a CBCT-CTVa envelope for each patient. Maximum distortion between each orthogonal border of the planning CTVa and CBCT-CTVa envelope was measured. Frequency, volume and location of CBCT-CTVa envelope beyond the planning target volume (PTVa) was analysed. RESULTS Population systematic and random errors were 1 and 3 mm respectively. 112 CBCTs were analysed in the interfractional motion study. CTVa varied between each imaging session particularly T location patients of anorectal origin. CTVa border expansions ≥ 1 cm were seen inferiorly, anteriorly, posteriorly and left direction. The CBCT-CTVa envelope fell beyond the PTVa ≥ 50% imaging sessions (n = 5). Of these CBCT CTVa distortions beyond PTVa, 44% and 32% were in the upper and lower thirds of PTVa respectively. CONCLUSION The AC is susceptible to volume changes and shape deformations. Care must be taken when calculating or considering reducing the PTV margin to the anus. Advances in knowledge: Within a limited field of research, this study provides further knowledge of how the AC deforms during anal cancer radiotherapy.
Collapse
Affiliation(s)
- Corrinne J Brooks
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Laurence Bernier
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Vibeke N Hansen
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Diana M Tait
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| |
Collapse
|
8
|
Gonzalez VJ, Hullett CR, Burt L, Rassiah-Szegedi P, Sarkar V, Tward JD, Hazard LJ, Huang YJ, Salter BJ, Gaffney DK. Impact of prone versus supine positioning on small bowel dose with pelvic intensity modulated radiation therapy. Adv Radiat Oncol 2017; 2:235-243. [PMID: 28740937 PMCID: PMC5514253 DOI: 10.1016/j.adro.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/15/2023] Open
Abstract
Purpose To report the results of a prospective study that compares small bowel doses during prone and supine pelvic intensity modulated radiation therapy. Methods and materials Ten patients receiving pelvic radiation therapy each had 2 intensity modulated radiation therapy plans generated: supine and prone on a belly board (PBB). Computed tomography on rails was performed weekly throughout treatment in both positions (10 scans per patient). After image fusion, doses to small bowel (SB) loops and clinical target volume were calculated for each scan. Changes between the planned and received doses were analyzed and compared between positions. The impact of bladder filling on SB dose was also assessed. Results Prone treatment was associated with significantly lower volumes of SB receiving ≥20 Gy. On average, prone on a belly board positioning reduced the volume of SB receiving a given dose of radiation by 28% compared with supine positioning. Target coverage throughout the treatment course was similar in both positions with an average minimum clinical target volume dose of 88% of the prescribed prone dose and 89% of the supine (P = .54). For supine treatment, SB dose was inversely correlated with bladder filling (P = .001-.013; P > .15 for prone). For 96% of treatments, the volume of SB that received a given dose deviated >10% from the plan. The deviation between the planned and delivered doses to SB did not differ significantly between the positions. Conclusions Prone positioning on a belly board during pelvic IMRT consistently reduces the volume of SB that receives a broad range of radiation doses. Prone IMRT is associated with interfraction dose variation to SB that is similar to that of supine positioning. These findings suggest that prone positioning with daily image guided radiation therapy is an effective method for maximizing SB sparing during pelvic IMRT.
Collapse
Affiliation(s)
- Victor J Gonzalez
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona
| | - Craig R Hullett
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin
| | - Lindsay Burt
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Prema Rassiah-Szegedi
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Vikren Sarkar
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jonathan D Tward
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Y Jessica Huang
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Bill J Salter
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David K Gaffney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Durrant L, Robinson M, Hawkins MA, Van den Heuvel F, Muirhead R. Quantifying target-specific motion in anal cancer patients treated with intensity modulated radiotherapy (IMRT). Radiother Oncol 2016; 121:92-97. [PMID: 27576432 PMCID: PMC5100804 DOI: 10.1016/j.radonc.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023]
Abstract
Background and purpose Intensity modulated radiotherapy requires all target areas to be treated by a single radiotherapy plan. In anal cancer, the pelvic nodes, inguinal nodes and primary tumour represent three different targets. We aim to calculate target-specific motion in anal cancer radiotherapy, when delivered using a single pelvic online auto-match. Materials and methods Twenty consecutive patients treated using IMRT at a single institution were studied. CBCTs were retrospectively re-matched around the inguinal nodes and primary tumour. Match values were recorded relative to origin, defined as pelvic CBCT auto-match. Systematic and random errors were quantified to determine target-specific motion and suggested margins calculated using van Herk formulae. Results The suggested margins to cover the independent motion of the inguinal and anal targets for LR, CC and AP set up around the inguinal nodes were 1.5 mm, 2.7 mm and 2.8 mm; and the primary tumour were, 4.6 mm, 8.9 mm and 5.2 mm respectively. Conclusions Target-specific set up will likely result in reduced treatment volumes and as such reduced toxicity. This is the first time a relationship has been described between pelvic bones, inguinal nodes and primary tumour. The PLATO study will prospectively assess the toxicity and outcomes of this target-specific margins strategy.
Collapse
Affiliation(s)
- Lisa Durrant
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Maxwell Robinson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Maria A Hawkins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | | | - Rebecca Muirhead
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK.
| |
Collapse
|
10
|
[Clinical to target volume margins determination in radiotherapy for anal cancers]. Cancer Radiother 2016; 20:645-50. [PMID: 27614499 DOI: 10.1016/j.canrad.2016.07.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
There are very few data on the expansion from the clinical target volume (CTV) to the planning target volume (PTV) in the anal cancer treatment. This article aims to collect the different elements needed for the construction of a PTV from scientific data based on a literature analysis. We reviewed the articles published in the medical literature from the last 20years. They concerned setup errors and internal organ mobility of the different volumes of patients treated by conformational radiotherapy and intensity-modulated radiotherapy (anal canal, meso-rectum, common, intern and extern, inguinal and pre-sacral lymph nodes). CTV to PTV margins admitted in the guidelines and atlas of consensus groups (SFRO, RTOG, AGITG) are from 0.7 to 1cm in all directions, based on expert's opinions but not on scientific data. There are no specific studies on the canal anal mobility. Most of the data are from other pelvis cancers (gynecologic, rectum and prostate). Setup errors can be reduced by daily imaging. Patient repositioning and immobilization modalities are mostly local habits rather than scientific consensus. A three-dimensional 1cm margin is generally admitted. Margins reduction must be careful and has to be assessed.
Collapse
|
11
|
Cubillos Mesías M, Boda-Heggemann J, Thoelking J, Lohr F, Wenz F, Wertz H. Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy. PLoS One 2016; 11:e0150326. [PMID: 26930196 PMCID: PMC4773093 DOI: 10.1371/journal.pone.0150326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/11/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly. Material and Methods Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504). For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined. Results The systematic (and random errors) in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0), 2.6(3.9) and 2.9(3.9)mm; for prostate bed, 1.7(2.0), 2.2(3.6) and 2.6(3.1)mm; for cervix, 2.8(3.4), 2.3(4.6) and 3.2(3.9)mm; for rectum, 1.6(3.1), 2.1(2.9) and 2.5(3.8)mm; for anal, 1.7(3.7), 2.1(5.1) and 2.5(4.8)mm; for head and neck, 1.9(2.3), 1.4(2.0) and 1.7(2.2)mm; for brain, 1.0(1.5), 1.1(1.4) and 1.0(1.1)mm; and for mediastinum, 3.3(4.6), 2.6(3.7) and 3.5(4.0)mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm) and the largest for mediastinum (11.5, 9.1 and 11.6mm). For pelvic treatments the means (and standard deviations) were 7.3 (1.6), 8.5 (0.8) and 9.6 (0.8)mm. Conclusions Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies.
Collapse
Affiliation(s)
- Macarena Cubillos Mesías
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Thoelking
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lohr
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hansjoerg Wertz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Blanco Kiely JP, White BM, Low DA, Qi SX. Geometric validation of MV topograms for patient localization on TomoTherapy. Phys Med Biol 2016; 61:728-39. [PMID: 26717197 DOI: 10.1088/0031-9155/61/2/728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our goal was to geometrically validate the use of mega-voltage orthogonal scout images (MV topograms) as a fast and low-dose alternative to mega-voltage computed tomography (MVCT) for daily patient localization on the TomoTherapy system. To achieve this, anthropomorphic head and pelvis phantoms were imaged on a 16-slice kilo-voltage computed tomography (kVCT) scanner to synthesize kilo-voltage digitally reconstructed topograms (kV-DRT) in the Tomotherapy detector geometry. MV topograms were generated for couch speeds of 1-4 cm s(-1) in 1 cm s(-1) increments with static gantry angles in the anterior-posterior and left-lateral directions. Phantoms were rigidly translated in the anterior-posterior (AP), superior-inferior (SI), and lateral (LAT) directions to simulate potential setup errors. Image quality improvement was demonstrated by estimating the noise level in the unenhanced and enhanced MV topograms using a principle component analysis-based noise level estimation algorithm. Average noise levels for the head phantom were reduced by 2.53 HU (AP) and 0.18 HU (LAT). The pelvis phantom exhibited average noise level reduction of 1.98 HU (AP) and 0.48 HU (LAT). Mattes Mutual Information rigid registration was used to register enhanced MV topograms with corresponding kV-DRT. Registration results were compared to the known rigid displacements, which assessed the MV topogram localization's sensitivity to daily positioning errors. Reduced noise levels in the MV topograms enhanced the registration results so that registration errors were <1 mm. The unenhanced head MV topograms had discrepancies < 2.1 mm and the pelvis topograms had discrepancies < 2.7 mm. Result were found to be consistent regardless of couch speed. In total, 64.7% of the head phantom MV topograms and 60.0% of the pelvis phantom MV topograms exactly measured the phantom offsets. These consistencies demonstrated the potential for daily patient positioning using MV topogram pairs in the context bony-anatomy based procedures such as total marrow irradiation, total body irradiation, and cranial spinal irradiation.
Collapse
Affiliation(s)
- Janid P Blanco Kiely
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
13
|
Bonnes pratiques de radiothérapie guidée par l’image. Cancer Radiother 2015; 19:489-500. [DOI: 10.1016/j.canrad.2015.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022]
|
14
|
Sánchez-Rubio P, Rodríguez-Romero R, Castro-Tejero P. A retrospective tomotherapy image-guidance study: analysis of more than 9,000 MVCT scans for ten different tumor sites. J Appl Clin Med Phys 2014; 15:4663. [PMID: 25493505 PMCID: PMC5711128 DOI: 10.1120/jacmp.v15i6.4663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 06/24/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to quantify the systematic and random errors for various disease sites when daily MVCT scans are acquired, and to analyze alterna- tive off-line verification protocols (OVP) with respect to the patient setup accuracy achieved. Alignment data from 389 patients (9,418 fractions) treated at ten differ- ent anatomic sites with daily image-guidance (IG) on a helical tomotherapy unit were analyzed. Moreover, six OVP were retrospectively evaluated. For each OVP, the frequency of the residual setup errors and additional margins required were calculated for the treatment sessions without image guidance. The magnitude of the three-dimensional vector displacement and its frequency were evaluated for all OVP. From daily IG, the main global systematic error was in the vertical direction (4.4-9.4 mm), and all rotations were negligible (less than 0.5°) for all anatomic sites. The lowest systematic and random errors were found for H&N and brain patients. All OVP were effective in reducing the mean systematic error to less than 1 mm and 0.2° in all directions and roll corrections for almost all treatment sites. The treatment margins needed to adapt the residual errors should be increased by 2-5 mm for brain and H&N, around 8 mm in the vertical direction for the other anatomic sites, and up to 19 mm in the longitudinal direction for abdomen patients. Almost 70% of the sessions presented a setup error of 3 mm for OVPs with an imaging frequency above 50%. Only for brain patients it would be feasible to apply an OVP because the residual setup error could be compensated for with a slight margin increase. However, daily imaging should be used for anatomic sites of difficult immobilization and/or large interfraction movement.
Collapse
|
15
|
Yang ZX, Shen JT, Li YP, Zhao K, Shi CH, Xiao Y, Yu JJ, Guo WD, Li CC, Wang YQ, Li XL. Helical tomotherapy for cancer treatment: a rapid health technology assessment. J Evid Based Med 2014; 7:192-218. [PMID: 25156336 DOI: 10.1111/jebm.12109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 06/09/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Helical tomotherapy (HT) can be applied to treat complex malignant cancer with high-precise radiotherapy, and it can reduce the damage to normal tissues and improve treatment effects. But the procurement of HT must be approved by relevant departments of administration affairs. This study, appointed by the National Health and Family Planning Commission of China and undertook by the National Health Development Research Center and the Chinese Evidence-Based Medicine Centre, was aimed to rapidly assess the effectiveness, safety, costs, and applicability of HT, so as to provide currently available best evidence for decision-makers of health policies. METHODS We electronically searched databases including PubMed, EMbase, The Cochrane Library, CNKI, WanFang Data, VIP, CBM, and other professional websites. Two reviewer independently screened literature according to the inclusion and exclusion criteria, extracted data, assessed quality, and then performed descriptive analysis. RESULTS (i) We finally included 150 studies, encompassing 5 HTAs, 18 CCTs, and 127 observational studies. (ii) The included HTAs were published during 2006-2009, providing fairly less evidence of low quality and the results of 145 primary studies showed that: HT had been used mainly in the treatments of 14 kinds of cancer, with low total toxicity and high survival rates. Although the quality of the included studies was poor, there was much evidence about prostate cancer, head and neck cancer, nasopharynx cancer, cervical cancer, lung cancer and liver cancer, with enough sample and fairly reliable results in HT efficacy and safety. And (iii) a total of 56 clinical trials were registered in Clinicaltrials.gov, most of which were registered by the occident. Among them, 9 were completed but the results had not been published yet. CONCLUSIONS The evidence of this study showed that, HT is safe and effective in clinic. But the abovementioned conclusion needs to be verified by conducting more high-quality studies with long-term follow-up. The costs of HT in procurement, maintenance, and application are high; and the skills, training, and qualification of operators are required. We suggest that the procurement of HT should be reduced; it should be allocated rationally and effectively used after comprehensive assessment in China's cancer epidemiology characteristics, health resource allocation, disease burden, medical service level, etc.; and also high-quality studies with long-term follow-up should be financially supported on the basis of establishing projects, so as to provide local evidence and consistently guide and improve scientific decision-making.
Collapse
Affiliation(s)
- Zong Xia Yang
- Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
RTOG 0529: Intensity Modulated Radiation Therapy and Anal Cancer, a Step in the Right Direction? Int J Radiat Oncol Biol Phys 2013; 86:8-10. [DOI: 10.1016/j.ijrobp.2013.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 12/22/2022]
|
17
|
Takenaga E, Nakaguchi Y, Maruyama M, Nagasue N, Kakei K, Kai Y, Kouno T, Sasaki M, Hashida M. [Comparison of various image guided radiation therapy systems; image-guided localization accuracy and patient throughput]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2012; 68:1327-32. [PMID: 23089834 DOI: 10.6009/jjrt.2012_jsrt_68.10.1327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we evaluated various image guided radiation therapy (IGRT) systems regarding accuracy and patient throughput for conventional radiation therapy. We compared between 2D-2D match (the collation by 2 X-rays directions), cone beam computed tomography (CBCT), and ExacTrac X-Ray system using phantom for CLINAC iX and Synergy. All systems were able to correct within almost 1 mm. ExacTrac X-Ray system showed in particular a high accuracy. As for patient throughput, ExacTrac X-Ray system was the fastest system and 2D-2D match for Synergy was the slowest. All systems have enough ability with regard to accuracy and patient throughput on clinical use. ExacTrac X-Ray system showed superiority with accuracy and throughput, but it is important to note that we have to choose the IGRT technique depending on the treatment site, the purpose, and the patient's state.
Collapse
Affiliation(s)
- Eriko Takenaga
- Department of Radiological Technology, Kumamoto University Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
[Image guidance for the evaluation of setup accuracy]. Cancer Radiother 2012; 16:439-43. [PMID: 22921983 DOI: 10.1016/j.canrad.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 06/16/2012] [Indexed: 12/25/2022]
Abstract
Information obtained by different methods of image-guided radiotherapy now allows us to reposition the target volume. This evolution causes a change in practice and positioning control. In order to control positioning errors, a systematic control during the first three to five sessions is required. Random repositioning errors and clinical target volume motions can be mastered only by performing a daily imaging. Finally, image-guided radiotherapy allows assessing anatomical changes occurring during treatment, and opens the field of adaptive radiotherapy.
Collapse
|