1
|
Pirozzi I, Snider A, Kraus M, Schönbrunner ER, Tripathi A. Microfluidic Immiscible Phase Filtration System for the Isolation of Small Numbers of Cells from Whole Blood. Cytometry A 2019; 95:885-897. [PMID: 30852843 DOI: 10.1002/cyto.a.23736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022]
Abstract
Isolation of circulating tumor cells (CTCs) has generated clinical and academic interest due to the important role that CTCs play in cancer metastasis and diagnosis. Here, we present a PDMS and glass prototype of a microfluidic device for the immunomagnetic, immiscible phase filtration based capture, and isolation of MCF-7 breast cancer cells, from various sample matrices including PBS-based buffer, blood plasma, and unprocessed whole blood. Following optimization of surface energy of an oil-water interface, microfluidic geometry, and bead-binding kinematics, our microfluidic device achieved 95 ± 4% recovery of target cells from PBS-based buffer with 95% purity, 90 ± 3% recovery of target cells from blood plasma and recovery of ~70 ± 5% from unprocessed whole blood with purity >99% with 1 ml blood samples with 1,000 spiked target cells. From quantitative studies to assess the nonspecific carryover of contaminants from whole blood, we found that our system accomplishes a >175 fold depletion in platelets, >900 fold depletion in erythrocytes, and >1,700 fold depletion in leukocytes with respect to unprocessed whole blood, enabling us to avoid sample pre-processing. In addition, we found that ~95% of the isolated target cells were viable, making them suitable for subsequent molecular and cellular studies. We quantify and propose mechanisms for the carryover of platelet, erythrocyte, and leukocyte contamination in purified samples, rather than relying on sample pre-processing. These results validate the continued study of our platform for extraction of CTCs from patient samples and other rare cell isolation applications. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ileana Pirozzi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| | - Adam Snider
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| | - Morey Kraus
- PerkinElmer, 940 Winter St, Waltham, Massachusetts
| | | | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
2
|
Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 2015; 20:2553-68. [PMID: 24831278 DOI: 10.1158/1078-0432.ccr-13-2664] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the most promising developments in translational cancer medicine has been the emergence of circulating tumor cells (CTC) as a minimally invasive multifunctional biomarker. CTCs in peripheral blood originate from solid tumors and are involved in the process of hematogenous metastatic spread to distant sites for the establishment of secondary foci of disease. The emergence of modern CTC technologies has enabled serial assessments to be undertaken at multiple time points along a patient's cancer journey for pharmacodynamic (PD), prognostic, predictive, and intermediate endpoint biomarker studies. Despite the promise of CTCs as multifunctional biomarkers, there are still numerous challenges that hinder their incorporation into standard clinical practice. This review discusses the key technical aspects of CTC technologies, including the importance of assay validation and clinical qualification, and compares existing and novel CTC enrichment platforms. This article discusses the utility of CTCs as a multifunctional biomarker and focuses on the potential of CTCs as PD endpoints either directly via the molecular characterization of specific markers or indirectly through CTC enumeration. We propose strategies for incorporating CTCs as PD biomarkers in translational clinical trials, such as the Pharmacological Audit Trail. We also discuss issues relating to intrapatient heterogeneity and the challenges associated with isolating CTCs undergoing epithelial-mesenchymal transition, as well as apoptotic and small CTCs. Finally, we envision the future promise of CTCs for the selection and monitoring of antitumor precision therapies, including applications in single CTC phenotypic and genomic profiling and CTC-derived xenografts, and discuss the promises and limitations of such approaches. See ALL articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- Timothy A Yap
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Lorente
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Aurelius Omlin
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Olmos
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Johann S de Bono
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| |
Collapse
|