1
|
Jiang L, Xu D, Xu Q, Chatziioannou A, Iwamoto KS, Hui S, Sheng K. Robust Automated Mouse Micro-CT Segmentation Using Swin UNEt TRansformers. Bioengineering (Basel) 2024; 11:1255. [PMID: 39768073 PMCID: PMC11673508 DOI: 10.3390/bioengineering11121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Image-guided mouse irradiation is essential to understand interventions involving radiation prior to human studies. Our objective is to employ Swin UNEt TRansformers (Swin UNETR) to segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a sequence-to-sequence prediction task using a hierarchical Swin Transformer encoder to extract features at five resolution levels, and it connects to a Fully Convolutional Neural Network (FCNN)-based decoder via skip connections. The models were trained and evaluated on open datasets, with data separation based on individual mice. Further evaluation on an external mouse dataset acquired on a different micro-CT with lower kVp and higher imaging noise was also employed to assess model robustness and generalizability. The results indicate that Swin UNETR consistently outperforms nnU-Net and AIMOS in terms of the average dice similarity coefficient (DSC) and the Hausdorff distance (HD95p), except in two mice for intestine contouring. This superior performance is especially evident in the external dataset, confirming the model's robustness to variations in imaging conditions, including noise and quality, and thereby positioning Swin UNETR as a highly generalizable and efficient tool for automated contouring in pre-clinical workflows.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| | - Di Xu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| | - Qifan Xu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| | - Arion Chatziioannou
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope, Duarte, CA 91010, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (L.J.)
| |
Collapse
|
2
|
Garate-Soraluze E, Marco-Sanz J, Serrano-Mendioroz I, Marrodán L, Fernandez-Rubio L, Labiano S, Rodríguez-Ruiz ME. Radiotherapy protocols for mouse cancer model. Methods Cell Biol 2024; 185:99-113. [PMID: 38556454 DOI: 10.1016/bs.mcb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.
Collapse
Affiliation(s)
- Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Javier Marco-Sanz
- Program of Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain; Department of Pediatrics, University of Navarra Clinic, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Lucía Marrodán
- Program of Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Sara Labiano
- Program of Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain; Department of Pediatrics, University of Navarra Clinic, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María E Rodríguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Kozin SV. Vascular damage in tumors: a key player in stereotactic radiation therapy? Trends Cancer 2022; 8:806-819. [PMID: 35835699 DOI: 10.1016/j.trecan.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The use of stereotactic radiation therapy (SRT) for cancer treatment has grown in recent years, showing excellent results for some tumors. The greatly increased doses per fraction in SRT compared to conventional radiotherapy suggest a 'new biology' that determines treatment outcome. Proposed mechanisms include significant damage to tumor blood vessels and enhanced antitumor immune responses, which are also vasculature-dependent. These ideas are mostly based on the results of radiation studies in animal models because direct observations in humans are limited. However, even preclinical findings are somewhat incomplete and result in ambiguous conclusions. Current evidence of vasculature-related mechanisms of SRT is reviewed. Understanding them could result in better optimization of SRT alone or in combination with immune or other cancer therapies.
Collapse
Affiliation(s)
- Sergey V Kozin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Milic M, Mondini M, Deutsch E. How to Improve SBRT Outcomes in NSCLC: From Pre-Clinical Modeling to Successful Clinical Translation. Cancers (Basel) 2022; 14:cancers14071705. [PMID: 35406477 PMCID: PMC8997119 DOI: 10.3390/cancers14071705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. Stereotactic body radiotherapy (SBRT) has emerged as a major treatment modality for lung cancer in the last decade. Additional research is needed to elucidate underlying mechanisms of resistance and to develop improved therapeutic strategies. Clinical progress relies on accurate preclinical modelling of human disease in order to yield clinically meaningful results; however, successful translation of pre-clinical research is still lagging behind. In this review, we summarize the major clinical developments of radiation therapy for non-small-cell lung cancer (NSCLC), and we discuss the pre-clinical research models at our disposal, highlighting ongoing translational challenges and future perspectives. Abstract Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. While the delivery of conformal radiotherapy and image guidance of stereotactic body radiotherapy (SBRT) have revolutionized the treatment of early-stage non-small-cell lung cancer (NSCLC), additional research is needed to elucidate underlying mechanisms of resistance and identify novel therapeutic combinations. Clinical progress relies on the successful translation of pre-clinical work, which so far has not always yielded expected results. Improved clinical modelling involves characterizing the preclinical models and selecting appropriate experimental designs that faithfully mimic precise clinical scenarios. Here, we review the current role of SBRT and the scope of pre-clinical armamentarium at our disposal to improve successful clinical translation of pre-clinical research in the radiation oncology of NSCLC.
Collapse
Affiliation(s)
- Marina Milic
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
- Correspondence: (M.M.); (E.D.)
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
- Gustave Roussy, Département d’Oncologie-Radiothérapie, F-94805 Villejuif, France
- Correspondence: (M.M.); (E.D.)
| |
Collapse
|
5
|
Deng Z, Xu X, Dehghani H, Sforza DM, Iordachita I, Lim M, Wong JW, Wang KKH. Quantitative Bioluminescence Tomography for In Vivo Volumetric-Guided Radiotherapy. Methods Mol Biol 2022; 2393:701-731. [PMID: 34837208 PMCID: PMC9098109 DOI: 10.1007/978-1-0716-1803-5_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several groups, including ours, have initiated efforts to develop small-animal irradiators that mimic radiation therapy (RT) for human treatment. The major image modality used to guide irradiation is cone-beam computed tomography (CBCT). While CBCT provides excellent guidance capability, it is less adept at localizing soft tissue targets growing in a low image contrast environment. In contrast, bioluminescence imaging (BLI) provides strong image contrast and thus is an attractive solution for soft tissue targeting. However, commonly used 2D BLI on an animal surface is inadequate to guide irradiation, because optical transport from an internal bioluminescent tumor is highly susceptible to the effects of optical path length and tissue absorption and scattering. Recognition of these limitations led us to integrate 3D bioluminescence tomography (BLT) with the small animal radiation research platform (SARRP). In this chapter, we introduce quantitative BLT (QBLT) with the advanced capabilities of quantifying tumor volume for irradiation guidance. The detail of system components, calibration protocol, and step-by-step procedure to conduct the QBLT-guided irradiation are described.
Collapse
Affiliation(s)
- Zijian Deng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiangkun Xu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Daniel M Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Yoon SW, Kodra J, Miles DA, Kirsch DG, Oldham M. A method for generating intensity-modulated radiation therapy fields for small animal irradiators utilizing 3D-printed compensator molds. Med Phys 2020; 47:4363-4371. [PMID: 32281657 DOI: 10.1002/mp.14175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the feasibility of using fused deposition modeling (FDM) three-dimensional (3D) printer to generate radiation compensators for high-resolution (~1 mm) intensity-modulated radiation therapy (IMRT) for small animal radiation treatment. We propose a novel method incorporating 3D-printed compensator molds filled with NaI powder. METHODS The inverse planning module of the computational environment for radiotherapy research (CERR) software was adapted to simulate the XRAD-225Cx irradiator, both geometry and kV beam quality (the latter using a phase space file provided for XRAD-225Cx). A nine-field IMRT treatment was created for a scaled-down version of the imaging and radiation oncology core (IROC) Head and Neck IMRT credentialing test, recreated on a 2.2-cm-diameter cylindrical phantom. Optimized fluence maps comprising nine fields and a total of 2564 beamlets were calculated at resolution of 1.25 × 1.25 mm2 . A hollow compensator mold was created (using in-house software and algorithm) for each field using 3D printing with polylactic acid (PLA) filaments. The molds were then packed with sodium iodide powder (NaI, measured density ρNaI = 2.062 g/cm3 ). The mounted compensator mold thickness was limited to 13.8 mm due to clearance issues with couch collision. At treatment delivery, each compensator was manually mounted to a customized block tray attached to the reference 40 × 40 mm2 collimator. Compensator reproducibility among three repeated 3D-printed molds was measured with Radiochromic EBT2 film. The two-dimensional (2D) dose distributions of the nine fields were compared to calculated 2D doses from CERR using gamma comparisons with distance-to-agreement criteria of 0.5-0.25 mm and dose difference criteria of 3-5%. RESULTS Good reproducibility of 3D-printed compensator manufacture was observed with mean error of ±0.024 Gy and relative dose error of ±4.2% within the modulated part of the beam. Within the limit of 13.8 mm compensator height, a maximum radiation blocking efficiency of 91.5% was achieved. Per field, about 45.5 g of NaI powder was used. Gamma analysis on each of the nine delivered IMRT fields using radiochromic films resulted in eight of nine treatment fields with >90% pass rate with 5%/0.5 mm tolerances. However, low gamma passing rate of 49-66% (3%/0.25 mm to 5%/0.5 mm) was noted in one field, attributed to fabrication errors resulting in over-filling the mold. The nine-field treatment plan was delivered in under 30 min with no mechanical or collisional issues. CONCLUSIONS We show the feasibility of high spatial resolution IMRT treatment on a small animal irradiator utilizing 3D-printed compensator shells packed with NaI powder. Using the PLA mold with NaI powder was attractive due to the ease of 3D printing a PLA mold at high geometric resolution and the well-balanced attenuation properties of NaI powders that prevented the mold from becoming too bulky. IMRT fields with 1.25-mm resolution are capable with significant fluence modulation with relative dose accuracy of ±4.2%.
Collapse
Affiliation(s)
- Suk W Yoon
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, 19104, USA.,Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA
| | - Jacob Kodra
- Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA
| | - Devin A Miles
- UW School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27705, USA
| |
Collapse
|
7
|
Ghita M, Dunne VL, McMahon SJ, Osman SO, Small DM, Weldon S, Taggart CC, McGarry CK, Hounsell AR, Graves EE, Prise KM, Hanna GG, Butterworth KT. Preclinical Evaluation of Dose-Volume Effects and Lung Toxicity Occurring In and Out-of-Field. Int J Radiat Oncol Biol Phys 2019; 103:1231-1240. [PMID: 30552964 DOI: 10.1016/j.ijrobp.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to define the dose and dose-volume relationship of radiation-induced pulmonary toxicities occurring in and out-of-field in mouse models of early inflammatory and late fibrotic response. MATERIALS AND METHODS Early radiation-induced inflammation and fibrosis were investigated in C3H/NeJ and C57BL/6J mice, respectively. Animals were irradiated with 20 Gy delivered to the upper region of the right lung as a single fraction or as 3 consecutive fractions using the Small Animal Radiation Research Platform (Xstrahl Inc, Camberley, UK). Cone beam computed tomography was performed for image guidance before irradiation and to monitor late toxicity. Histologic sections were examined for neutrophil and macrophage infiltration as markers of early inflammatory response and type I collagen staining as a marker of late-occurring fibrosis. Correlation was evaluated with the dose-volume histogram parameters calculated for individual mice and changes in the observed cone beam computed tomography values. RESULTS Mean lung dose and the volume receiving over 10 Gy (V10) showed significant correlation with late responses for single and fractionated exposures in directly targeted volumes. Responses observed outside the target volume were attributed to nontargeted effects and showed no dependence on either mean lung dose or V10. CONCLUSIONS Quantitative assessment of normal tissue response closely correlates early and late pulmonary response with clinical parameters, demonstrating this approach as a potential tool to facilitate clinical translation of preclinical studies. Out-of-field effects were observed but did not correlate with dosimetric parameters, suggesting that nontargeted effects may have a role in driving toxicities outside the treatment field.
Collapse
Affiliation(s)
- Mihaela Ghita
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom.
| | - Victoria L Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Sarah O Osman
- Northern Ireland Cancer Centre, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Donna M Small
- Centre for Experimental Medicine, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Sinead Weldon
- Centre for Experimental Medicine, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Clifford C Taggart
- Centre for Experimental Medicine, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Conor K McGarry
- Northern Ireland Cancer Centre, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Alan R Hounsell
- Northern Ireland Cancer Centre, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Edward E Graves
- Department of Radiation Oncology, Stanford Cancer Center, Stanford University, Stanford, California
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Gerard G Hanna
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom; Northern Ireland Cancer Centre, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Karl T Butterworth
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
8
|
Evolution of the Supermodel: Progress in Modelling Radiotherapy Response in Mice. Clin Oncol (R Coll Radiol) 2019; 31:272-282. [PMID: 30871751 DOI: 10.1016/j.clon.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.
Collapse
|
9
|
Ghita M, Dunne V, Hanna GG, Prise KM, Williams JP, Butterworth KT. Preclinical models of radiation-induced lung damage: challenges and opportunities for small animal radiotherapy. Br J Radiol 2019; 92:20180473. [PMID: 30653332 DOI: 10.1259/bjr.20180473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite a major paradigm shift in radiotherapy planning and delivery over the past three decades with continuing refinements, radiation-induced lung damage (RILD) remains a major dose limiting toxicity in patients receiving thoracic irradiations. Our current understanding of the biological processes involved in RILD which includes DNA damage, inflammation, senescence and fibrosis, is based on clinical observations and experimental studies in mouse models using conventional radiation exposures. Whilst these studies have provided vital information on the pulmonary radiation response, the current implementation of small animal irradiators is enabling refinements in the precision and accuracy of dose delivery to mice which can be applied to studies of RILD. This review presents the current landscape of preclinical studies in RILD using small animal irradiators and highlights the challenges and opportunities for the further development of this emerging technology in the study of normal tissue damage in the lung.
Collapse
Affiliation(s)
- Mihaela Ghita
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Victoria Dunne
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Gerard G Hanna
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK.,2 Northern Ireland Cancer Centre, Belfast City Hospital , Belfast , Northern Ireland, UK
| | - Kevin M Prise
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Jaqueline P Williams
- 3 University of Rochester Medical Centre, University of Rochester , Rochester , USA
| | - Karl T Butterworth
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| |
Collapse
|
10
|
Integrating Small Animal Irradiators withFunctional Imaging for Advanced Preclinical Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11020170. [PMID: 30717307 PMCID: PMC6406472 DOI: 10.3390/cancers11020170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Translational research aims to provide direct support for advancing novel treatment approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in this process and the ability to accurately model biological and physical aspects of the clinical scenario in radiation oncology is critical to translational success. The use of small animal irradiators with disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate to improvements in clinical outcomes. The present review highlights the current technology and applications of small animal irradiators, and explores how these can be combined with molecular and functional imaging in advanced preclinical radiotherapy research.
Collapse
|
11
|
Ford E, Deye J. Current Instrumentation and Technologies in Modern Radiobiology Research—Opportunities and Challenges. Semin Radiat Oncol 2016; 26:349-55. [DOI: 10.1016/j.semradonc.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Rajaganapathy BR, Janicki JJ, Levanovich P, Tyagi P, Hafron J, Chancellor MB, Krueger S, Marples B. Intravesical Liposomal Tacrolimus Protects against Radiation Cystitis Induced by 3-Beam Targeted Bladder Radiation. J Urol 2015; 194:578-84. [PMID: 25839382 DOI: 10.1016/j.juro.2015.03.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE We primarily determined whether the small animal radiation research platform could create a rat radiation cystitis model via targeted bladder irradiation (phase I). The response to treating early phase radiation cystitis in rats with transurethral catheter instillation of liposomal tacrolimus was also examined (phase II). MATERIALS AND METHODS In phase I 16 adult female Sprague Dawley® rats were used. Metabolic urination patterns were analyzed before and after exposure to 20, 30 or 40 Gy radiation. In phase II irradiated rats were randomly assigned to receive a single instillation of saline or liposomal tacrolimus. RESULTS The 40 Gy radiation dose induced statistically significant reductions in the intermicturition interval compared to the lower radiation doses. By approximately 20 minutes 40 Gy radiation caused a significant decrease in the mean intermicturition interval (p < 0.0001). Histological analysis revealed degenerative epithelial changes and urothelial swelling with evidence of pseudocarcinomatous epithelial hyperplasia. Therefore, 40 Gy were chosen for the phase II efficacy study. There was no measurable change in total voided urine volume after irradiation, or after liposomal tacrolimus or saline instillation. Liposomal tacrolimus significantly increased the post-irradiation intermicturition interval by approximately 30 minutes back to baseline (p < 0.001). CONCLUSIONS The radiation cystitis rat model showed a dose dependent decrease in the intermicturition interval without inducing short-term skin or gastrointestinal damage. This study demonstrates that liposomal tacrolimus may be a promising new intravesical therapy for the rare, serious condition of radiation cystitis.
Collapse
Affiliation(s)
- Bharathi Raja Rajaganapathy
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph J Janicki
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Levanovich
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason Hafron
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael B Chancellor
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Sarah Krueger
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Marples
- Departments of Urology and Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; Lipella Pharmaceuticals, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|