1
|
Panizza D, Faccenda V, Arcangeli S, De Ponti E. Treatment Optimization in Linac-Based SBRT for Localized Prostate Cancer: A Single-Arc versus Dual-Arc Plan Comparison. Cancers (Basel) 2023; 16:13. [PMID: 38201441 PMCID: PMC10778084 DOI: 10.3390/cancers16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to comprehensively present data on treatment optimization in linac-based SBRT for localized prostate cancer at a single institution. Moreover, the dosimetric quality and treatment efficiency of single-arc (SA) versus dual-arc (DA) VMAT planning and delivery approaches were compared. Re-optimization was performed on twenty low-to-intermediate-risk- (36.25 Gy in 5 fractions) and twenty high-risk (42.7 Gy in 7 fractions) prostate plans initially administered with the DA FFF-VMAT technique in 2021. An SA approach was adopted, incorporating new optimization parameters based on increased planning and clinical experience. Analysis included target coverage, organ-at-risk (OAR) sparing, treatment delivery time, and the pre-treatment verification's gamma analysis-passing ratio. The SA optimization technique has consistently produced superior plans. Rectum and bladder mean doses were significantly reduced, and comparable target coverage and homogeneity were achieved in order to maintain a urethra protection strategy. The mean SA treatment delivery time was reduced by 22%; the mean monitor units increased due to higher plan complexity; and dose measurements demonstrated optimal agreement with calculations. The substantial reduction in treatment delivery time decreased the probability of prostate motion beyond the applied margins, suggesting potential decrease in treatment-related toxicity and improved target coverage in prostate SBRT. Further investigations are warranted to assess the long-term clinical outcomes.
Collapse
Affiliation(s)
- Denis Panizza
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (E.D.P.)
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
| | - Valeria Faccenda
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (E.D.P.)
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Elena De Ponti
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (V.F.); (E.D.P.)
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy;
| |
Collapse
|
2
|
Faccenda V, Panizza D, Daniotti MC, Pellegrini R, Trivellato S, Caricato P, Lucchini R, De Ponti E, Arcangeli S. Dosimetric Impact of Intrafraction Prostate Motion and Interfraction Anatomical Changes in Dose-Escalated Linac-Based SBRT. Cancers (Basel) 2023; 15:cancers15041153. [PMID: 36831496 PMCID: PMC9954235 DOI: 10.3390/cancers15041153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The dosimetric impact of intrafraction prostate motion and interfraction anatomical changes and the effect of beam gating and motion correction were investigated in dose-escalated linac-based SBRT. Fifty-six gated fractions were delivered using a novel electromagnetic tracking device with a 2 mm threshold. Real-time prostate motion data were incorporated into the patient's original plan with an isocenter shift method. Delivered dose distributions were obtained by recalculating these motion-encoded plans on deformed CTs reflecting the patient's CBCT daily anatomy. Non-gated treatments were simulated using the prostate motion data assuming that no treatment interruptions have occurred. The mean relative dose differences between delivered and planned treatments were -3.0% [-18.5-2.8] for CTV D99% and -2.6% [-17.8-1.0] for PTV D95%. The median cumulative CTV coverage with 93% of the prescribed dose was satisfactory. Urethra sparing was slightly degraded, with the maximum dose increased by only 1.0% on average, and a mean reduction in the rectum and bladder doses was seen in almost all dose metrics. Intrafraction prostate motion marginally contributed in gated treatments, while in non-gated treatments, further deteriorations in the minimum target coverage and bladder dose metrics would have occurred on average. The implemented motion management strategy and the strict patient preparation regimen, along with other treatment optimization strategies, ensured no significant degradations of dose metrics in delivered treatments.
Collapse
Affiliation(s)
- Valeria Faccenda
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Denis Panizza
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
| | - Martina Camilla Daniotti
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- Department of Physics, University of Milan, 20133 Milan, Italy
| | | | - Sara Trivellato
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Paolo Caricato
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Raffaella Lucchini
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
| | - Elena De Ponti
- Medical Physics Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Radiation Oncology Department, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- Correspondence:
| |
Collapse
|
3
|
Lu L, Chao E, Zhu T, Wang AZ, Lian J. Sequential monoscopic image-guided motion compensation in tomotherapy stereotactic body radiotherapy (SBRT) for prostate cancer. Med Phys 2023; 50:518-528. [PMID: 36397645 PMCID: PMC9868108 DOI: 10.1002/mp.16112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To manage intra-fractional motions, recent developments in tomotherapy enable a unique capability of adjusting MLC/jaw to track the moving target based on the intra-fractional motions detected by sequential monoscopic imaging. In this study, we evaluated the effectiveness of motion compensation with a realistic imaging rate for prostate stereotactic body radiotherapy (SBRT). The obtained results will guide optimizing treatment parameters and image-guided radiation therapy (IGRT) in tomotherapy using this approach. METHODS Ten retrospective prostate cases with actual prostate motion curves previously recorded through the Calypso system were used in this study. Based on the recorded peak-to-peak motion, these cases represented either large (> 5 mm) or median (≤ 5 mm) intra-fractional prostate motions. All the cases were re-planned on tomotherapy using 35 Gy/5 fractions SBRT regimen and three different jaw settings of 1 cm static, 2.5 cm static, and 2.5 cm dynamic jaw. Two motion compensation methods were evaluated: a complete compensation that adjusted the jaw and MLC every 0.1 s (the same rate as the Calypso motion trace), and a realistic compensation that adjusted the jaw and MLC at an average imaging interval of 6 s from sequential monoscopic images. An in-house 4D dose calculation software was then applied to calculate the dosimetric outcomes from the original motion-free plan, the motion-contaminated plan, and the two abovementioned motion-compensated plans. During the process, various imaging rates were also simulated in one case with unusually large motions to quantify the impact of the KV-imaging rate on the effectiveness of motion compensation. RESULTS The effectiveness of motion compensation was evaluated based on the PTV coverage and OAR sparing. Without any motion-compensation, the PTV coverage (PTV V100%) of patients with large prostate motions decreased remarkably to 55%-82% when planning with the 1 cm jaw but to a less level of 67-94% with the 2.5 cm jaw. In contrast, motion compensation improved the PTV coverage (>92%) when combined with the 2.5 cm jaw, but less effective, around 75%-94%, with the 1 cm jaw. For OAR sparing, the bladder D1cc, bladder D10cc, and rectum D1cc all increased in the motion-contaminated plans. Motion compensation improved OAR sparing to the equivalent level of the original motion-free plans. For patients with median prostate motion, motion-induced degradation in PTV coverage was only observed when planning with the 1 cm jaw. After motion compensation, the PTV coverage improved to better than 94% for all three jaw settings. Additionally, the effectiveness of motion compensation depends on the imaging rate. Motion compensation with a typical rate of two KV images per gantry rotation effectively reduces motion-induced dosimetric uncertainties. However, a higher imaging rate is recommended when planning with a 1 cm jaw for patients with large motions. CONCLUSION Our results demonstrated that the performance of sequential monoscopic imaging-guided motion compensation on tomotherapy depends on the amplitude of intra-fractional prostate motion, the plan parameter settings, especially jaw setting, gantry rotation, and the imaging rate for motion compensation. Creating a patient-specific imaging guidance protocol is essential to balance the effectiveness of motion compensation and achievable imaging rate for intra-fractional motion tracking.
Collapse
Affiliation(s)
- Lan Lu
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195
| | - Edward Chao
- Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089
| | - Tong Zhu
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrew Zhuang Wang
- Department of Radiation Oncology, The University of North Carolina, Chapel Hill, NC 27599
| | - Jun Lian
- Department of Radiation Oncology, The University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Goddard L, Jeong K, Tang J, Garg M, Tomé WA. Reducing PTV margins for prostate SBRT with motion compensation and gating techniques. J Appl Clin Med Phys 2022; 24:e13861. [PMID: 36478148 PMCID: PMC10113684 DOI: 10.1002/acm2.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study is to investigate the dosimetric accuracy of prostate SBRT when motion is considered. To account for target movement, motion compensation and gating techniques were investigated with PTV margins reduced to 2 mm. To allow for dosimetric measurements a Delta4 phantom, Gafchromic film, and Hexamotion motion platform were utilized. Four motion files were utilized that represent a range of motions. Analysis of measured prostate motions for fifteen patients was performed to ensure detected motions were similar to those previously reported and motion files utilized were suitable. Five patient plans were utilized to allow for the effects of MLC and target motion interplay to be investigated. For both motion compensation and gating techniques, plans were delivered to the stationary phantom and for each of four motion types with/without compensation/gating enabled. Using a 3%, 2 mm and 80% threshold gamma criteria, film measurements had an average pass rate of 80.5% for uncorrected deliveries versus 96.0% for motion compensated deliveries. For gated techniques average pass rates increased from 89.9% for uncorrected to 94.8% with gating enabled. Measurements with the Delta4 arrays were analyzed with a 3%, 2 mm and 10% threshold dose. An average pass rate of 83.8% was measured for uncorrected motions versus 94.8% with motion compensation. For the gated technique an average pass rate of 87.2% was found for uncorrected motions versus 96.9% with gating enabled. These results show that very high gamma pass rates are achievable when motion compensation or gating techniques are applied. When target motion is not accounted for shifts up to 5 mm in planned versus delivered isodose distributions were found. However, when motion compensation, or gated techniques were applied, much smaller differences between planned and delivered isodose distributions were found. With these techniques dose delivery accuracy is greatly improved, allowing for PTV margins to be reduced.
Collapse
Affiliation(s)
- Lee Goddard
- Department of Radiation Oncology Montefiore Medical Center Bronx New York USA
- Albert Einstein College of Medicine Bronx New York USA
| | - Kyoungkeun Jeong
- Department of Radiation Oncology Montefiore Medical Center Bronx New York USA
- Albert Einstein College of Medicine Bronx New York USA
| | - Justin Tang
- Department of Radiation Oncology Montefiore Medical Center Bronx New York USA
- Albert Einstein College of Medicine Bronx New York USA
| | - Madhur Garg
- Department of Radiation Oncology Montefiore Medical Center Bronx New York USA
- Albert Einstein College of Medicine Bronx New York USA
| | - Wolfgang A. Tomé
- Department of Radiation Oncology Montefiore Medical Center Bronx New York USA
- Albert Einstein College of Medicine Bronx New York USA
| |
Collapse
|
5
|
De Silva K, Brown A, Edwards C. Impact of transperineal ultrasound on perineal skin dose in prostate radiation therapy. Tech Innov Patient Support Radiat Oncol 2022; 23:27-32. [PMID: 36090010 PMCID: PMC9460562 DOI: 10.1016/j.tipsro.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction This study investigated the relationship between anatomical compression introduced via ultrasound probe pressure and maximum perineum dose in prostate radiotherapy patients using the Clarity transperineal ultrasound (TPUS) system. Methods 115 patient ultrasound and computed tomography scans were retrospectively analysed. The probe to prostate apex distance (PPA), probe to inferior corpus spongiosum distance (PICS) and maximum perineum dose were calculated. Compression was represented by the PICS and the calculated corpus to prostate ratio (CPR). Demographics included treatment technique, image quality, body mass index (BMI) and age. Multiple linear regression analysis assessed the relationship between compression measures and perineum dose. Results The maximum dose to perineum ranged from 1.81 to 45.56 Gy, with a median of 5.87 Gy (Interquartile range (IQR) 3.17). The PICS distance and CPR recorded was 1.67 cm (IQR 0.63) and 0.51 (range 0.29-0.85) respectively. Regression analysis demonstrated both PICS and CPR were significant predictors of maximum dose to the perineum (p < 0.001). Patient-specific factors, including age, BMI, treatment technique and ultrasound image quality, were not factors that significantly impacted the maximum perineum dose. Conclusion There was a statistically significant association between increased anatomical compression and perineal dose measurements. A PICS of 1.2 cm or greater is recommended, with compression reduced as much as possible without losing anatomical US definition. Future investigations would be beneficial to evaluate the optimal balance between ultrasound image quality and transducer compression considering the perineum dose.
Collapse
Affiliation(s)
- Kalani De Silva
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, Australia
| | - Amy Brown
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Christopher Edwards
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Varnava M, Sumida I, Oda M, Kurosu K, Isohashi F, Seo Y, Otani K, Ogawa K. Dosimetric comparison between volumetric modulated arc therapy planning techniques for prostate cancer in the presence of intrafractional organ deformation. JOURNAL OF RADIATION RESEARCH 2021; 62:309-318. [PMID: 33341880 PMCID: PMC7948894 DOI: 10.1093/jrr/rraa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose-volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P < 0.05). Furthermore, SA plans had fewer MUs and were less complex (P < 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.
Collapse
Affiliation(s)
- Maria Varnava
- Corresponding author. Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: +81-6-6879-3482; Fax: +81-6-6879-3489;
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michio Oda
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kurosu
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Omotayo A, Venkataraman S, McCurdy B. Constrained optimization towards marker-based tumor tracking in VMAT. Biomed Phys Eng Express 2021; 7. [DOI: 10.1088/2057-1976/abce0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Abstract
This study proposes that incorporating marker-based visibility constraints into the optimization of volumetric modulated arc therapy (VMAT) will generate treatment plans which not only ensure a higher chance of successfully applying real-time tumor tracking techniques, but also simultaneously satisfy dosimetric objectives. This was applied clinically and investigated for multiple disease sites (10 prostate, 5 liver, and 5 lung) using a radiotherapy optimization software (MonArc), where these new constraints were added to conventional dosimetric constraints. For all the investigated sites, three fiducial markers were located inside or around the planning target volume (PTV), and VMAT plans were created for each patient. We modified MonArc to analyze the multi-leaf collimator (MLC) beam’s-eye-view at all control points in the gantry arc, while including marker-based visibility constraints of type ‘hard’ (i.e. requiring 100% visibility of all markers, HC) and ‘soft’ (i.e. penalizes visibility for one marker [SCI] or two markers [SCII] only) in the optimization process. Dose distributions resulting from the constrained plans (HC, SCI, and SCII) were compared to the non-constrained plan (NC—plans optimized without visibility constraints) using several quantitative dose metrics including the conformity index, homogeneity index, doses to PTV and to organs-at-risk (OAR). Generally, the NC plan produced the best PTV dose conformity and the least OAR doses for the entire patient datasets, followed by the SC and then HC plans, with all the optimization approaches typically achieving acceptable dose metrics. Across the three disease sites, visibility of all three markers in MLC apertures increased from 32% to 100% of available control points as visibility constraints strengthened. Although dose metrics showed some deterioration for constrained plans (−6% for SCI up to −15% for HC using the PTV average index), the required dosimetric objectives were still satisfied in at least 90% of patients. In conclusion, we demonstrated that marker and tumour visibility constraints can be incorporated with dosimetric objectives to produce treatment plans satisfying both objectives, which should ensure greater success when applying real-time tracking for VMAT delivery.
Collapse
|
8
|
Xu Q, Tong X, Lin M, Chen X, ElDib A, Lin T, Chen L, Ma CMC. Time and frequency to observe fiducial markers in MLC-modulated fields during prostate IMRT/VMAT beam delivery. Phys Med 2020; 76:142-149. [PMID: 32679409 DOI: 10.1016/j.ejmp.2020.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/10/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE This work investigates the time and frequency to observe fiducial markers in MLC-modulated fields during intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) beam delivery for real-time prostate localization. METHODS Thirty seven prostate patients treated with IMRT or VMAT were included in this retrospective study. DRR images were generated for all MLC segments/control points using the TPS. The MLC leaf pattern of each control point was overlaid on the DRR, and the number of fiducials within the MLC opening was analyzed. EPID images of fiducials in a pelvic phantom were obtained to demonstrate the fiducial visibility during modulated beam delivery. RESULTS Gold fiducials were visible on EPID images. The probability of seeing a number of fiducials within the MLC opening was analyzed. At least one fiducial was visible during 42 ± 2% and 52 ± 2% beam-on time for IMRT of the prostate with and without lymph nodes, and during 81 ± 4% and 80 ± 5% beam-on time for VMAT of the prostate with and without lymph nodes, respectively. The mean time interval to observe at least one fiducial was 8.4 ± 0.7 and 5.9 ± 0.5 s for IMRT of the prostate with and without the lymph nodes, respectively, and 1.6 ± 0.1 s for VMAT prostate patients. The estimated potential dosimetric uncertainty was 7% and 2% for IMRT and VMAT, respectively. CONCLUSIONS Our results demonstrated that the time and frequency to observe fiducial markers in MLC-modulated fields during IMRT/VMAT beam delivery were adequate for real-time prostate localization. The beam's eye view fiducial positions could be used for intrafractional target monitoring and motion correction in prostate radiotherapy.
Collapse
Affiliation(s)
- Qianqian Xu
- Radiation Oncology Department, 3rd Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xu Tong
- Radiation Oncology Department, 3rd Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Muhan Lin
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Xiaoming Chen
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Ahmed ElDib
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Teh Lin
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Lili Chen
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - C-M Charlie Ma
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Kontaxis C, de Muinck Keizer DM, Kerkmeijer LG, Willigenburg T, den Hartogh MD, van der Voort van Zyp JR, de Groot-van Breugel EN, Hes J, Raaymakers BW, Lagendijk JJ, de Boer HC. Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system. Phys Imaging Radiat Oncol 2020; 15:23-29. [PMID: 33458322 PMCID: PMC7807644 DOI: 10.1016/j.phro.2020.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/27/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Monitoring the intrafraction motion and its impact on the planned dose distribution is of crucial importance in radiotherapy. In this work we quantify the delivered dose for the first prostate patients treated on a combined 1.5T Magnetic Resonance Imaging (MRI) and linear accelerator system in our clinic based on online 3D cine-MR and treatment log files. MATERIALS AND METHODS A prostate intrafraction motion trace was obtained with a soft-tissue based rigid registration method with six degrees of freedom from 3D cine-MR dynamics with a temporal resolution of 8.5-16.9 s. For each fraction, all dynamics were also registered to the daily MR image used during the online treatment planning, enabling the mapping to this reference point. Moreover, each fraction's treatment log file was used to extract the timestamped machine parameters during delivery and assign it to the appropriate dynamic volume. These partial plans to dynamic volume combinations were calculated and summed to yield the delivered fraction dose. The planned and delivered dose distributions were compared among all patients for a total of 100 fractions. RESULTS The clinical target volume underwent on average a decrease of 2.2% ± 2.9% in terms of D99% coverage while bladder V62Gy was increased by 1.6% ± 2.3% and rectum V62Gy decreased by 0.2% ± 2.2%. CONCLUSIONS The first MR-linac dose reconstruction results based on prostate tracking from intrafraction 3D cine-MR and treatment log files are presented. Such a pipeline is essential for online adaptation especially as we progress to MRI-guided extremely hypofractionated treatments.
Collapse
Affiliation(s)
| | | | - Linda G.W. Kerkmeijer
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| | - Thomas Willigenburg
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| | - Mariska D. den Hartogh
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| | | | | | - Jochem Hes
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| | - Bas W. Raaymakers
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| | - Jan J.W. Lagendijk
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| | - Hans C.J. de Boer
- University Medical Center Utrecht, Department of Radiotherapy, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
10
|
Vanhanen A, Poulsen P, Kapanen M. Dosimetric effect of intrafraction motion and different localization strategies in prostate SBRT. Phys Med 2020; 75:58-68. [PMID: 32540647 DOI: 10.1016/j.ejmp.2020.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/04/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was -0.3 ± 0.4%, -0.4 ± 0.6% and -0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were -29.0% and -7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.
Collapse
Affiliation(s)
- A Vanhanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, POB-2000, 33521 Tampere, Finland; Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, POB-2000, 33521 Tampere, Finland.
| | - P Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, Entrance B3, 8200 Aarhus N, Denmark
| | - M Kapanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, POB-2000, 33521 Tampere, Finland; Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, POB-2000, 33521 Tampere, Finland
| |
Collapse
|
11
|
Chasseray M, Dissaux G, Lucia F, Boussion N, Goasduff G, Pradier O, Bourbonne V, Schick U. Kilovoltage intrafraction monitoring during normofractionated prostate cancer radiotherapy. Cancer Radiother 2020; 24:99-105. [PMID: 32201058 DOI: 10.1016/j.canrad.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE During radiotherapy (RT) for prostate cancer (PCa), interfraction and intrafraction movements can lead to decreased target dose coverage and unnecessary over-exposure of organs at risk. New image-guided RT techniques accuracy allows planning target volume (PTV) margins reduction. We aim to assess the feasibility of a kilovoltage intrafraction monitoring (KIM) to track the prostate during RT. METHODS AND MATERIALS Between November 2017 and April 2018, 44 consecutive patients with PCa were included in an intrafraction prostate motion study using the Truebeam Auto Beam Hold® tracking system (Varian Medical Systems, United State) triggered by gold fiducials localization on kilovoltage (kV) imaging. A 5-mm PTV was considered. A significant gating event (SGE) was defined as the occurrence of an automatic beam interruption requiring patient repositioning following the detection of one fiducial outside a 5-mm target area around the marker during more than 45seconds. RESULTS Six patients could not benefit from the KIM because of technical issues (loss of one fiducial marker=1, hip prosthesis=4, morbid obesity causing table movements=1). The mean rate of SGE per patient was 14±19%, and the fraction average delivery time was increased by 146±86seconds. For a plan of 39 fractions of 2Gy, the additional radiation dose increased by 0.13±0.09Gy. The mean rates of SGE were 2% and 18% (P=0.002) in patients with planned fraction<90 and>90seconds respectively, showing that duration of the session strongly interfered with prostate intrafraction movements. No other significant clinical and technical parameter was correlated with the occurrence of SGE. CONCLUSION Automated intrafraction kV imaging can effectively perform autobeam holds due to intrafraction movement of the prostate in the large majority of patients. The additional radiation dose and delivery time are acceptable. This technique may be a cost-effective alternative to electromagnetic transponder guidance.
Collapse
Affiliation(s)
- M Chasseray
- Radiation Oncology Department, CHU de Brest, Brest, France
| | - G Dissaux
- Radiation Oncology Department, CHU de Brest, Brest, France; LaTIM, INSERM, UMR 1101, CHRU de Brest, Brest, France
| | - F Lucia
- Radiation Oncology Department, CHU de Brest, Brest, France
| | - N Boussion
- Radiation Oncology Department, CHU de Brest, Brest, France; LaTIM, INSERM, UMR 1101, CHRU de Brest, Brest, France
| | - G Goasduff
- Radiation Oncology Department, CHU de Brest, Brest, France
| | - O Pradier
- Radiation Oncology Department, CHU de Brest, Brest, France; LaTIM, INSERM, UMR 1101, CHRU de Brest, Brest, France; Faculté de médecine et des sciences de la santé, université de Bretagne Occidentale, Brest, France
| | - V Bourbonne
- Radiation Oncology Department, CHU de Brest, Brest, France
| | - U Schick
- Radiation Oncology Department, CHU de Brest, Brest, France; LaTIM, INSERM, UMR 1101, CHRU de Brest, Brest, France; Faculté de médecine et des sciences de la santé, université de Bretagne Occidentale, Brest, France.
| |
Collapse
|
12
|
de Muinck Keizer DM, Kontaxis C, Kerkmeijer LGW, van der Voort van Zyp JRN, van den Berg CAT, Raaymakers BW, Lagendijk JJW, de Boer JCJ. Dosimetric impact of soft-tissue based intrafraction motion from 3D cine-MR in prostate SBRT. Phys Med Biol 2020; 65:025012. [PMID: 31842008 DOI: 10.1088/1361-6560/ab6241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate the dosimetric impact of intrafraction translation and rotation motion of the prostate, as extracted from daily acquired post-treatment 3D cine-MR based on soft-tissue contrast, in extremely hypofractionated (SBRT) prostate patients. Accurate dose reconstruction is performed by using a prostate intrafraction motion trace which is obtained with a soft-tissue based rigid registration method on 3D cine-MR dynamics with a temporal resolution of 11 s. The recorded motion of each time-point was applied to the planning CT, resulting in the respective dynamic volume used for dose calculation. For each treatment fraction, the treatment delivery record was generated by proportionally splitting the plan into 11 s intervals based on the delivered monitor units. For each fraction the doses of all partial plan/dynamic volume combinations were calculated and were summed to lead to the motion-affected fraction dose. Finally, for each patient the five fraction doses were summed, yielding the total treatment dose. Both daily and total doses were compared to the original reference dose of the respective patient to assess the impact of the intrafraction motion. Depending on the underlying motion of the prostate, different types of motion-affected dose distributions were observed. The planning target volumes (PTVs) ensured CTV_30 (seminal vesicles) D99% coverage for all patients, CTV_35 (prostate corpus) coverage for 97% of the patients and GTV_50 (local boost) for 83% of the patients when compared against the strict planning target D99% value. The dosimetric impact due to prostate intrafraction motion in extremely hypofractionated treatments was determined. The presented study is an essential step towards establishing the actual delivered dose to the patient during radiotherapy fractions.
Collapse
|
13
|
Matsubayashi F, Takahashi R, Kamima T, Sato Y, Sato T. [Influence of Respiratory Phase during Image Acquisition on Prescribed Dose in Image Guided Radiation Therapy Using Implant Marker for Prostate Cancer]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:1394-1402. [PMID: 31866637 DOI: 10.6009/jjrt.2019_jsrt_75.12.1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In image guided radiation therapy (IGRT) using implanted fiducial marker by two-dimensional radiography for prostate cancer, temporal positional relationship during treatment between the isocenter and the prostate is changed by respiratory phase at the time of image acquisition. We examined influence of the respiratory phase in the IGRT on dose variation by interplay effect. Intra-fractional prostate motions of patients who were implanted fiducial marker were measured using fluoroscopy, then we reconstructed plans considering for the respiratory phase in IGRT and the respiratory motion during volumetric modulated arc therapy. Averages of the intra-fractional prostate motion in left-right, anterior-posterior and superior-inferior direction were 0.039, 0.49 and 1.6 mm respectively. There was a patient whose intra-fractional prostate motion was larger than 4 mm that was planning target volume margin. By changing the respiratory phase like inspiration, exhalation and dispersing respiratory phase in each fraction, dose variation from original plan became smaller in order of the inspiration, exhalation and dispersion. The largest variations of dose indices in clinical target volume, bladder and rectum were 8.0%, 4.5% and 9.1% respectively when IGRT was done in inspiration. When the IGRT is performed by the same respiratory phase in each fraction, systematic dose variations may occur even if the respiratory phase at the timing of irradiation is changed. By dispersing the respiratory phase in each fraction, the variations in all dose indices were<1% from original plan. We realized that dispersing the respiratory phase in IGRT by each fraction is effective to reduce the dose variation caused by the respiratory phase in IGRT.
Collapse
Affiliation(s)
| | - Ryo Takahashi
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East
| | - Tatsuya Kamima
- Department of Radiation Therapy, Cancer Institute Hospital
| | - Yosuke Sato
- Department of Radiation Therapy, Cancer Institute Hospital
| | - Tomoharu Sato
- Department of Radiation Therapy, Cancer Institute Hospital
| |
Collapse
|
14
|
Shepherd A, James SS, Rengan R. The Practicality of ICRU and Considerations for Future ICRU Definitions. Semin Radiat Oncol 2018; 28:201-206. [PMID: 29933880 DOI: 10.1016/j.semradonc.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The International Commission on Radiation Units and Measurements (ICRU) volumes are standardized volume definitions used in radiation oncology practice that have evolved over time to account for advancements in technology and radiation planning. The current definitions have strengths but also practical limitations. The main limitation is related to the process of accounting for tumor motion during treatment. As radiotherapeutic techniques become more precise, motion interplay effects and anatomical changes during treatment must be taken into account to ensure accurate and safe delivery of treatment. Adaptive replanning can help to mitigate the effect of these uncertainties and widen the therapeutic ratio by maximizing dose to the tumor and protecting critical normal structures. As adaptive replanning becomes more common, standardization of how adaptive therapy is implemented and reported will become necessary.
Collapse
Affiliation(s)
- Annemarie Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Sara St James
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington, Seattle, WA
| |
Collapse
|
15
|
De Roover R, Crijns W, Poels K, Peeters R, Draulans C, Haustermans K, Depuydt T. Characterization of a novel liquid fiducial marker for multimodal image guidance in stereotactic body radiotherapy of prostate cancer. Med Phys 2018. [PMID: 29537613 DOI: 10.1002/mp.12860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Liquid fiducial markers have shown to be a promising alternative to solid gold markers in terms of imaging artifact reduction, patient comfort, and compatibility with different imaging modalities. This study aims to investigate the performance of the novel BioXmark® liquid marker for state-of-the-art multimodal imaging used in prostate cancer (PCa) radiotherapy, encompassing kV CT/CBCT, multiparametric MRI, and kV x-ray imaging. In addition, automatic detection of the liquid markers in x-ray imaging for prostate motion monitoring during treatment was investigated. METHODS A total of eight BioXmark® liquid markers with varying volumes (range 5-300 μL) were casted on a square grid into a gelatin phantom insert. A cylindrical gold marker (QLRAD, length = 7 mm, Ø = 1 mm) was inserted for reference. Liquid marker visibility and streaking artifacts in CT/CBCT imaging were evaluated by placing the gelatin phantom into a CIRS anthropomorphic phantom. Relevant MRI characteristics such as the T2 and T1 relaxation times, the ADC value, and the relative proton density (ρH) were quantified by placing the gelatin phantom insert next to a T1MES mapping phantom and a water-filled syringe for reference. Ex vivo multiparametric MRI images were acquired by placing the gelatin phantom next to a resected prostate specimen. Anterior-posterior x-ray projection images were obtained by placing the gelatin phantom insert on top of an anthropomorphic pelvic phantom with internal pelvic bony structures and were acquired for five positions relative to the bony anatomy and 24 clinically relevant x-ray exposure settings. To quantify individual automatic marker detection, single markers were artificially isolated in the x-ray images using postprocessing. RESULTS Markers of all sizes were clearly visible on CT and CBCT images with only the largest marker volumes (100-300 μL) displaying artifacts similar in size to the gold fiducial marker. Artifact size increased with increasing liquid marker volume. Liquid markers displayed good contrast in ex vivo T1-weighted and ρH-weighted images. The markers were not visible in the ex vivo T2-weighted image. The liquid markers induced a chemical shift artifact in the obtained ADC-map. Automated detection in x-ray imaging was feasible with high detection success (four of five positions) for marker volumes in the range of 25-200 μL. None of the liquid markers were detected successfully when superimposed on a bony edge, independent of their size. CONCLUSIONS This study is the first to show the compatibility of BioXmark® liquid markers with multimodal image-guided radiotherapy for PCa. Compared to a solid gold marker, they had favorable results in both visibility and induced imaging artifacts. Liquid marker visibility in MRI imaging of the prostate does not solely depend on the low ρH value (not visible on T2-weighted image) but is also influenced by its relaxation times. Automated marker detection in x-ray images was feasible but better adapted marker detection algorithms are necessary for marker localization in the presence of bony edges. Hence, the liquid marker provides a minimally invasive (fine needles) and highly applicable alternative to current solid gold markers for multimodal image-guided prostate radiotherapy treatments.
Collapse
Affiliation(s)
- Robin De Roover
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Wouter Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Kenneth Poels
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Cédric Draulans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Tom Depuydt
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
16
|
[Therapeutic innovations in radiation oncology for localized prostate cancer]. Cancer Radiother 2017; 21:454-461. [PMID: 28890087 DOI: 10.1016/j.canrad.2017.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022]
Abstract
Intensity-modulated radiation therapy, image-guided radiation therapy with fiducial markers and prostate brachytherapy allow the delivery of dose escalation for localized prostate cancer with very low rates of long-term toxicity and sequelae. Nowadays, modern radiotherapy techniques make it possible to shorten treatment time with hypofractionation, to better protect surrounding healthy tissues and to escalate the dose even further. Advances in radiotherapy are closely linked to advances in magnetic resonance imaging (MRI) and/or PET imaging. Functional imaging makes it possible to deliver personalised pelvic nodal radiotherapy, targeting the nodal areas at higher risk of microscopic involvement. In patients with an index lesion at baseline or at failure, MR-based focal therapy or focal dose escalation with brachytherapy or stereotactic body radiation therapy is also currently investigated. MR-based adaptive radiotherapy, which makes it possible to track prostate shifts during radiation delivery, is another step forward in the integration of MR imaging in radiation delivery.
Collapse
|
17
|
Chi Y, Tian Z, Jia X. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy. Phys Med Biol 2016; 61:5851-67. [DOI: 10.1088/0031-9155/61/15/5851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Barbés B, Azcona JD, Prieto E, de Foronda JM, García M, Burguete J. Development and clinical evaluation of a simple optical method to detect and measure patient external motion. J Appl Clin Med Phys 2015; 16:306–321. [PMID: 26699313 PMCID: PMC5690156 DOI: 10.1120/jacmp.v16i5.5524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/26/2015] [Accepted: 04/22/2015] [Indexed: 12/25/2022] Open
Abstract
A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out‐of‐tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in‐house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET. PACS numbers: 87.55.N, 87.56.Da
Collapse
Affiliation(s)
- Benigno Barbés
- Clinica Universidad de Navarra; Recinto de Complejo Hospitalario de Navarra.
| | | | | | | | | | | |
Collapse
|
19
|
Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial. Int J Radiat Oncol Biol Phys 2015; 92:1141-1147. [DOI: 10.1016/j.ijrobp.2015.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/28/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
|
20
|
Henderson D, Tree A, van As N. Stereotactic Body Radiotherapy for Prostate Cancer. Clin Oncol (R Coll Radiol) 2015; 27:270-9. [DOI: 10.1016/j.clon.2015.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/02/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
|
21
|
Ravkilde T, Keall PJ, Grau C, Høyer M, Poulsen PR. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking. Phys Med Biol 2014; 59:7279-96. [DOI: 10.1088/0031-9155/59/23/7279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|