1
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
2
|
Tian X, Zheng J, Mou W, Lu G, Chen S, Du J, Zheng Y, Chen S, Shen B, Li J, Wang N. Development and validation of a hypoxia-stemness-based prognostic signature in pancreatic adenocarcinoma. Front Pharmacol 2022; 13:939542. [PMID: 35935823 PMCID: PMC9350896 DOI: 10.3389/fphar.2022.939542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is one of the most aggressive and fatal gastrointestinal malignancies with high morbidity and mortality worldwide. Accumulating evidence has revealed the clinical significance of the interaction between the hypoxic microenvironment and cancer stemness in pancreatic cancer progression and therapies. This study aims to identify a hypoxia-stemness index-related gene signature for risk stratification and prognosis prediction in PAAD.Methods: The mRNA expression-based stemness index (mRNAsi) data of PAAD samples from The Cancer Genome Atlas (TCGA) database were calculated based on the one-class logistic regression (OCLR) machine learning algorithm. Univariate Cox regression and LASSO regression analyses were then performed to establish a hypoxia-mRNAsi-related gene signature, and its prognostic performance was verified in both the TCGA-PAAD and GSE62452 corhorts by Kaplan-Meier and receiver operating characteristic (ROC) analyses. Additionally, we further validated the expression levels of signature genes using the TCGA, GTEx and HPA databases as well as qPCR experiments. Moreover, we constructed a prognostic nomogram incorporating the eight-gene signature and traditional clinical factors and analyzed the correlations of the risk score with immune infiltrates and immune checkpoint genes.Results: The mRNAsi values of PAAD samples were significantly higher than those of normal samples (p < 0.001), and PAAD patients with high mRNAsi values exhibited worse overall survival (OS). A novel prognostic risk model was successfully constructed based on the eight-gene signature comprising JMJD6, NDST1, ENO3, LDHA, TES, ANKZF1, CITED, and SIAH2, which could accurately predict the 1-, 3-, and 5-year OS of PAAD patients in both the training and external validation datasets. Additionally, the eight-gene signature could distinguish PAAD samples from normal samples and stratify PAAD patients into low- and high-risk groups with distinct OS. The risk score was closely correlated with immune cell infiltration patterns and immune checkpoint molecules. Moreover, calibration analysis showed the excellent predictive ability of the nomogram incorporating the eight-gene signature and traditional clinical factors.Conclusion: We developed a hypoxia-stemness-related prognostic signature that reliably predicts the OS of PAAD. Our findings may aid in the risk stratification and individual treatment of PAAD patients.
Collapse
Affiliation(s)
- Xiong Tian
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jing Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wanlan Mou
- Department of Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Guoguang Lu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yufen Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Jun Li, ; Na Wang,
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Jun Li, ; Na Wang,
| |
Collapse
|
3
|
Garcia Garcia CJ, Huang Y, Fuentes NR, Turner MC, Monberg ME, Lin D, Nguyen ND, Fujimoto TN, Zhao J, Lee JJ, Bernard V, Yu M, Delahoussaye AM, Jimenez Sacarello I, Caggiano EG, Phan JL, Deorukhkar A, Molkentine JM, Saur D, Maitra A, Taniguchi CM. Stromal HIF2 Regulates Immune Suppression in the Pancreatic Cancer Microenvironment. Gastroenterology 2022; 162:2018-2031. [PMID: 35216965 PMCID: PMC9278556 DOI: 10.1053/j.gastro.2022.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) has a hypoxic, immunosuppressive stroma that contributes to its resistance to immune checkpoint blockade therapies. The hypoxia-inducible factors (HIFs) mediate the cellular response to hypoxia, but their role within the PDAC tumor microenvironment remains unknown. METHODS We used a dual recombinase mouse model to delete Hif1α or Hif2α in α-smooth muscle actin-expressing cancer-associated fibroblasts (CAFs) arising within spontaneous pancreatic tumors. The effects of CAF HIF2α expression on tumor progression and composition of the tumor microenvironment were evaluated by Kaplan-Meier analysis, reverse transcription quantitative real-time polymerase chain reaction, histology, immunostaining, and by both bulk and single-cell RNA sequencing. CAF-macrophage crosstalk was modeled ex vivo using conditioned media from CAFs after treatment with hypoxia and PT2399, an HIF2 inhibitor currently in clinical trials. Syngeneic flank and orthotopic PDAC models were used to assess whether HIF2 inhibition improves response to immune checkpoint blockade. RESULTS CAF-specific deletion of Hif2α, but not Hif1α, suppressed PDAC tumor progression and growth, and improved survival of mice by 50% (n = 21-23 mice/group, Log-rank P = .0009). Deletion of CAF-HIF2 modestly reduced tumor fibrosis and significantly decreased the intratumoral recruitment of immunosuppressive M2 macrophages and regulatory T cells. Treatment with the clinical HIF2 inhibitor PT2399 significantly reduced in vitro macrophage chemotaxis and M2 polarization, and improved tumor responses to immunotherapy in both syngeneic PDAC mouse models. CONCLUSIONS Together, these data suggest that stromal HIF2 is an essential component of PDAC pathobiology and is a druggable therapeutic target that could relieve tumor microenvironment immunosuppression and enhance immune responses in this disease.
Collapse
Affiliation(s)
- Carolina J Garcia Garcia
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center Houston, Texas; School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Yanqing Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natividad R Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madeleine C Turner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Monberg
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas D Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vincent Bernard
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meifang Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abagail M Delahoussaye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Emily G Caggiano
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center Houston, Texas
| | - Jae L Phan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amit Deorukhkar
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021; 13:6135. [PMID: 34885243 PMCID: PMC8657427 DOI: 10.3390/cancers13236135] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the median overall survival of PDAC patients rarely exceeds 1 year and has an overall 5-year survival rate of about 9%. These numbers are anticipated to worsen in the future due to the lack of understanding of the factors involved in its strong chemoresistance. Chemotherapy remains the only treatment option for most PDAC patients; however, the available therapeutic strategies are insufficient. The factors involved in chemoresistance include the development of a desmoplastic stroma which reprograms cellular metabolism, and both contribute to an impaired response to therapy. PDAC stroma is composed of immune cells, endothelial cells, and cancer-associated fibroblasts embedded in a prominent, dense extracellular matrix associated with areas of hypoxia and acidic extracellular pH. While multiple gene mutations are involved in PDAC initiation, this desmoplastic stroma plays an important role in driving progression, metastasis, and chemoresistance. Elucidating the mechanisms underlying PDAC resistance are a prerequisite for designing novel approaches to increase patient survival. In this review, we provide an overview of the stromal features and how they contribute to the chemoresistance in PDAC treatment. By highlighting new paradigms in the role of the stromal compartment in PDAC therapy, we hope to stimulate new concepts aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | | | - Khalid O. Alfarouk
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah 42316, Saudi Arabia;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| |
Collapse
|
5
|
Kato A, Ng S, Thangasamy A, Han H, Zhou W, Raeppel S, Fallon M, Guha S, Ammanamanchi S. A potential signaling axis between RON kinase receptor and hypoxia-inducible factor-1 alpha in pancreatic cancer. Mol Carcinog 2021; 60:734-745. [PMID: 34347914 PMCID: PMC9292374 DOI: 10.1002/mc.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022]
Abstract
The Cancer Genome Atlas (TCGA) of a pancreatic cancer cohort identified high MST1R (RON tyrosine kinase receptor) expression correlated with poor prognosis in human pancreatic cancer. RON expression is null/minimal in normal pancreas but elevates from pan-in lesions through invasive carcinomas. We report using multiple approaches RON directly regulates HIF-1α, a critical driver of genes involved in cancer cell invasion and metastasis. RON and HIF-1α are highly co-expressed in the 101 human PDAC tumors analyzed and RON expression correlated with HIF-1α expression in a subset of PDAC cell lines. knockdown of RON expression in RON positive cells blocked HIF-1α expression, whereas ectopic RON expression in RON null cells induced HIF-1α expression suggesting the direct regulation of HIF-1α by RON kinase receptor. RON regulates HIF-1α through an unreported transcriptional mechanism involving PI3 kinase-mediated AKT phosphorylation and Sp1-dependent HIF-1α promoter activity leading to increased HIF-1α mRNA expression. RON/HIF-1α modulation altered the invasive behavior of PDAC cells. A small-molecule RON kinase inhibitor decreased RON ligand, MSP-induced HIF-1α expression, and invasion of PDAC cells. Immunohistochemical analysis on RON knockdown orthotopic PDAC tumor xenograft confirmed that RON inhibition significantly blocked HIF-1α expression. RON/HIF-1α co-expression also exists in triple-negative breast cancer cells, a tumor type that also lacks molecular therapeutic targets. This is the first report describing RON/HIF-1α axis in any tumor type and is a potential novel therapeutic target.
Collapse
Affiliation(s)
- Akihisa Kato
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Serina Ng
- Division of Molecular Medicine, TGen, Phoenix, Arizona, USA
| | - Amalraj Thangasamy
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Haiyong Han
- Division of Molecular Medicine, TGen, Phoenix, Arizona, USA
| | - Wendi Zhou
- Department of Pathology, Banner University Medical Center, Phoenix, Arizona, USA
| | | | - Michael Fallon
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sushovan Guha
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sudhakar Ammanamanchi
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Customized 3D-printed occluders enabling the reproduction of consistent and stable heart failure in swine models. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhang Y, Ma H, Chen C. Long non‑coding RNA PCED1B‑AS1 promotes pancreatic ductal adenocarcinoma progression by regulating the miR‑411‑3p/HIF‑1α axis. Oncol Rep 2021; 46:134. [PMID: 34036383 PMCID: PMC8144929 DOI: 10.3892/or.2021.8085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
An increasing number of studies have shown that long non‑coding RNAs (lncRNAs) are crucially involved in tumorigenesis. However, the biological functions, underlying mechanisms and clinical value of lncRNA PC‑esterase domain containing 1B‑antisense RNA 1 (PCED1B‑AS1) in pancreatic ductal adenocarcinoma (PDAC) have not been determined, to the best of our knowledge. In the present study, the expression of PCED1B‑AS1, microRNA (miR)‑411‑3p and hypoxia inducible factor (HIF)‑1α mRNA in 47 cases of PDAC tissues were detected using reverse transcription‑quantitative (RT‑q)PCR. Moreover, the effects of PCED1B‑AS1 on the biological behaviors of PDAC cells were assessed using Cell Counting Kit‑8, EdU staining and Transwell assays. Bioinformatics analysis, RT‑qPCR, western blotting, dual luciferase reporter gene and RNA immunoprecipitation assays were performed to determine the regulatory relationships between PCED1B‑AS1, miR‑411‑3p and HIF‑1α. We demonstrated that PCED1B‑AS1 was significantly upregulated in PDAC tumor tissues, and its expression was associated with advanced Tumor‑Node‑Metastasis stage and lymph node metastasis. PCED1B‑AS1 knockdown inhibited PDAC cell proliferation, invasion as well as epithelial‑mesenchymal transition (EMT) in vitro. Mechanistically, PCED1B‑AS1 was shown to target miR‑411‑3p, resulting in the upregulation of HIF‑1α. In conclusion, PCED1B‑AS1 expression was upregulated in PDAC tissues and cells, and it participated in promoting the proliferation, invasion and EMT of cancer cells by modulating the miR‑411‑3p/HIF‑1α axis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gastroenterology, The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - Huan Ma
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Chang Chen
- Department of Gastroenterology, The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
8
|
Abstract
Background: Early diagnosis in pancreatic cancer is key for improving prognosis. Hypoxia plays a critical role in tumor progression. Thus, an evaluation of associations between pancreatic tumor progression and markers of hypoxia is needed. Methods: We assessed the expression of hypoxia-inducible factors (HIF-1α and HIF-2α) by immuno-histochemical staining from 29 subjects with the following: pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), neuroendocrine tumor (NET), and pancreatic ductal adenocarcinoma (PDAC) and compared it to the expression in non-tumor samples. Results: Expression of HIF-1α increased significantly from PanIN (3.01 ± 0.17) to IPMN (7.63 ± 0.18), NET (9.10 ± 0.23) and PDAC samples (11.06 ± 0.15, p < 0.0001). Similar findings were observed for HIF-2α (p < 0.0001)}. A strong correlation between HIF-1α and HIF-2α expression was demonstrated (R2 = 0.8408, p < 0.0001). Conclusions: This data suggest that HIF-1α and HIF-2α may play a role in the progression from PanIN through PDAC. Further studies are necessary to confirm these findings and determine the effect of HIFs abrogation on tumor progression that can lead to novel therapies.
Collapse
|
9
|
Zhong W, Huang C, Lin J, Zhu M, Zhong H, Chiang MH, Chiang HS, Hui MS, Lin Y, Huang J. Development and Validation of Nine-RNA Binding Protein Signature Predicting Overall Survival for Kidney Renal Clear Cell Carcinoma. Front Genet 2020; 11:568192. [PMID: 33133154 PMCID: PMC7566920 DOI: 10.3389/fgene.2020.568192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cumulative studies have shown that RNA binding proteins (RBPs) play an important role in numerous malignant tumors and are related to the occurrence and progression of tumors. However, the role of RBPs in kidney renal clear cell carcinoma (KIRC) is not fully understood. In this study, we first downloaded gene expression data and corresponding clinical information of KIRC from the Cancer Genome Atlas (TCGA) database, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) database, respectively. A total of 137 differentially expressed RBPs (DERBPs) were then identified between normal and tumor tissue, including 38 downregulated and 99 upregulated RBPs. Nine RBPs (EIF4A1, RPL36A, EXOSC5, RPL28, RPL13, RPS19, RPS2, EEF1A2, and OASL) were served as prognostic genes and exploited to construct a prognostic model through survival analysis. Kaplan-Meier curves analysis showed that the low-risk group had a better survival outcome when compared with the high-risk group. The area under the curve (AUC) value of the prognostic model was 0.713 in the TCGA data set (training data set), 0.706 in the ICGC data set, and 0.687 in the GSE29609 data set, respectively, confirming a good prognostic model. The prognostic model was also identified as an independent prognostic factor for KIRC survival by performing cox regression analysis. In addition, we also built a nomogram relying on age and the prognostic model and internal validation in the TCGA data set. The clinical benefit of the prognostic model was revealed by decision curve analysis (DCA). Gene set enrichment analysis revealed several crucial pathways (ERBB signaling pathway, pathways in cancer, MTOR signaling pathway, WNT signaling pathway, and TGF BETA signaling pathway) that may explain the underlying mechanisms of KIRC. Furthermore, potential drugs for KIRC treatment were predicted by the Connectivity Map (Cmap) database based on DERBPs, including several important drugs, such as depudecin and vorinostat, that could reverse KIRC gene expression, which may provide reference for the treatment of KIRC. In summary, we developed and validated a robust nine-RBP signature for KIRC prognosis prediction. A nomogram with risk score and age can be applied to promote the individualized prediction of overall survival in patients with KIRC. Moreover, the two drugs depudecin and vorinostat may contribute to KIRC treatment.
Collapse
Affiliation(s)
| | | | | | - Maoshu Zhu
- The Fifth Hospital of Xiamen, Xiamen, China
| | | | - Ming-Hsien Chiang
- Taiwan LinkMed Asia Public Health & Healthcare Management Research Association, Taipei, Taiwan
| | - Huei-Shien Chiang
- Taiwan LinkMed Asia Public Health & Healthcare Management Research Association, Taipei, Taiwan
| | | | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiyi Huang
- The Fifth Hospital of Xiamen, Xiamen, China.,Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Takahashi M, Nojima H, Kuboki S, Horikoshi T, Yokota T, Yoshitomi H, Furukawa K, Takayashiki T, Takano S, Ohtsuka M. Comparing prognostic factors of Glut-1 expression and maximum standardized uptake value by FDG-PET in patients with resectable pancreatic cancer. Pancreatology 2020; 20:1205-1212. [PMID: 32819845 DOI: 10.1016/j.pan.2020.07.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to assess the prognostic values of preoperative maximum standardized uptake value (SUVmax) of primary pancreatic tumors and Glut-1 expression in patients with resectable pancreatic ductal adenocarcinoma (R-PDAC), and to investigate whether Glut-1 expression is more effective than SUVmax in predicting survival in patients with R-PDAC. METHODS We investigated 101 R-PDAC patients who underwent pancreatectomy for pancreatic cancer treatment. SUVmax analyzed through 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT), and Glut-1 expression, were assessed for predicting the prognosis of patients with R-PDAC. RESULTS In patients with R-PDAC, the high SUVmax group (≥4.25) had significantly shorter overall survival (OS) and disease-free survival (DFS) than the low SUVmax group (<4.25). Surprisingly, Glut-1 expression was not significantly correlated with SUVmax. Moreover, the high Glut-1 expression group, which was related to higher levels of CA 19-9, had significantly shorter OS and DFS than the low Glut-1 expression group. Furthermore, among the high SUVmax group, OS and DFS were significantly shorter in the high Glut-1 expression group. Multivariate analyses revealed that Glut-1 overexpression was an independent prognostic factor in patients with R-PDAC. Glut-1 knockdown also induced cell cycle arrest in PDAC cells in vitro. CONCLUSIONS The study determined that Glut-1 overexpression is a more powerful prognostic factor than SUVmax for predicting OS and higher risk of recurrence in R-PDAC patients. Glut-1 overexpression is also more likely to be associated with malignant activity in PDAC patients.
Collapse
Affiliation(s)
- Makoto Takahashi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Nojima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Surgery, Teikyo Chiba Medical Center, Chiba, Japan.
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuro Horikoshi
- Department of Radiology, Graduate School of Medicine, Chiba University, Japan
| | - Tetsuo Yokota
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Tan Z, Xu J, Zhang B, Shi S, Yu X, Liang C. Hypoxia: a barricade to conquer the pancreatic cancer. Cell Mol Life Sci 2020; 77:3077-3083. [PMID: 31907561 PMCID: PMC11104901 DOI: 10.1007/s00018-019-03444-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (PC) remains one of the most extremely lethal malignancies worldwide due to late diagnosis and early metastasis, with a 1-year overall survival rate of approximately 20%. The hypoxic microenvironment, induced by intratumoral hypoxia, promotes tumor invasion and progression, leading to chemotherapy or radiotherapy resistance and eventual mortality after treatment of PC. However, the role of the hypoxic microenvironment in PC is complicated and requires further investigation. In this article, we review recent advances regarding the regulation of malignant behaviors in PC, which provide insight into the potential of hypoxic microenvironment activation therapy for the therapeutic agents.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Yamazaki H, Tanaka T, Mie K, Nishida H, Miura N, Akiyoshi H. Assessment of postoperative adjuvant treatment using toceranib phosphate against adenocarcinoma in dogs. J Vet Intern Med 2020; 34:1272-1281. [PMID: 32267594 PMCID: PMC7255667 DOI: 10.1111/jvim.15768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022] Open
Abstract
Background Toceranib phosphate (TOC) could be made widely available for treating tumors in dogs if evidence shows that TOC inhibits recurrence after surgery. Objectives To investigate how postoperative adjuvant treatment with TOC modulates the tumor microenvironment (TME), by assessing effects on angiogenic activity, tumor‐infiltrating regulatory T cells (Tregs), and intratumoral hypoxia. Animals Ninety‐two client‐owned dogs were included: 28 with apocrine gland anal sac adenocarcinoma, 24 with small intestinal adenocarcinoma, 22 with lung adenocarcinoma, and 18 with renal cell carcinoma. Methods Retrospective, multicenter study comparing time to progression (TTP) between 42 dogs treated by surgery and TOC and 50 dogs treated by surgery alone. Differences were analyzed in the expression of vascular endothelial growth factor receptor‐2 (VEGFR2) and the number of Foxp3+ Tregs and hypoxia‐inducible factor (HIF)‐1α+ cells in tumor tissues sampled at the first and second (recurrence) surgeries. Results Median TTP for dogs treated by surgery and TOC (360 days) was higher than that for dogs treated by surgery alone (298 days; hazard ratio, 0.82; 95% confidence interval [CI], 0.65‐0.96; P = .02). In dogs treated by surgery and TOC, VEGFR2 expression and the number of Tregs and HIF‐1α+ cells were significantly lower in tissues sampled at the second surgery than in those sampled after the first surgery. In dogs treated by surgery alone, significant differences were found between samples from the 2 surgeries. Conclusions and Clinical Importance Toceranib phosphate could prove to be a useful postoperative adjuvant treatment because of its modulation of the TME.
Collapse
Affiliation(s)
- Hiroki Yamazaki
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, Japan
| | - Toshiyuki Tanaka
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, Japan
| | - Keiichiro Mie
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, Japan
| | - Hidetaka Nishida
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Hideo Akiyoshi
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, Japan
| |
Collapse
|
13
|
Yamane T, Aikawa M, Yasuda M, Fukushima K, Seto A, Okamoto K, Koyama I, Kuji I. [ 18F]FMISO PET/CT as a preoperative prognostic factor in patients with pancreatic cancer. EJNMMI Res 2019; 9:39. [PMID: 31073705 PMCID: PMC6509312 DOI: 10.1186/s13550-019-0507-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
Background While [18F]fluoromisonidazole (FMISO), a representative PET tracer to detect hypoxia, is reported to be able to prospect the prognosis after treatment for various types of cancers, the relation is unclear for pancreatic cancer. The aim of this study is to assess the feasibility of [18F]FMISO PET/CT as a preoperative prognostic factor in patients with pancreatic cancer. Methods Patients with pancreatic cancer who had been initially planned for surgery received [18F]FMISO PET/CT. Peak standardized uptake value (SUV) of the pancreatic tumor was divided by SUVpeak of the aorta, and tumor blood ratio using SUVpeak (TBRpeak) was calculated. After preoperative examination, surgeons finally decided the operability of the patients. TBRpeak was compared with hypoxia-inducible factor (HIF)-1α immunohistochemistry when the tissues were available. Furthermore, correlation of TBRpeak with the recurrence-free survival and the overall survival were evaluated by Kaplan-Meyer methods. Results We analyzed 25 patients with pancreatic adenocarcinoma (11 women and 14 men, median age, 73 years; range, 58–81 years), and observed for 39–1101 days (median, 369 days). Nine cases (36.0%) were identified as visually positive of pancreatic cancer on [18F]FMISO PET/CT images. TBRpeak of the negative cases was significantly lower than that of the positive cases (median 1.08, interquartile range (IQR) 1.02–1.15 vs median 1.50, IQR 1.25–1.73, p < 0.001), and the cutoff TBRpeak was calculated as 1.24. Five patients were finally considered inoperable. There was no significant difference in TBRpeak of inoperable and operable patients (median 1.48, IQR 1.06–1.98 vs median 1.12, IQR 1.05–1.21, p = 0.10). There was no significant difference between TBRpeak and HIF-1α expression (p = 0.22). The patients were dichotomized by the TBRpeak cutoff, and the higher group showed significantly shorter recurrence-free survival than the other (median 218 vs 441 days, p = 0.002). As for overall survival of 20 cases of operated patients, the higher TBRpeak group showed significantly shorter overall survival than the other (median survival, 415 vs > 1000 days, p = 0.04). Conclusions [18F]FMISO PET/CT has the possibility to be a preoperative prognostic factor in patients with pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13550-019-0507-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomohiko Yamane
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan.
| | - Masayasu Aikawa
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Masanori Yasuda
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Kenji Fukushima
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Akira Seto
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Koujun Okamoto
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Isamu Koyama
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| |
Collapse
|
14
|
Fujimoto TN, Colbert LE, Huang Y, Molkentine JM, Deorukhkar A, Baseler L, de la Cruz Bonilla M, Yu M, Lin D, Gupta S, Cabeceiras PK, Kingsley CV, Tailor RC, Sawakuchi GO, Koay EJ, Piwnica-Worms H, Maitra A, Taniguchi CM. Selective EGLN Inhibition Enables Ablative Radiotherapy and Improves Survival in Unresectable Pancreatic Cancer. Cancer Res 2019; 79:2327-2338. [PMID: 31043430 PMCID: PMC6666414 DOI: 10.1158/0008-5472.can-18-1785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/03/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
When pancreatic cancer cannot be removed surgically, patients frequently experience morbidity and death from progression of their primary tumor. Radiation therapy (RT) cannot yet substitute for an operation because radiation causes fatal bleeding and ulceration of the nearby stomach and intestines before achieving tumor control. There are no FDA-approved medications that prevent or reduce radiation-induced gastrointestinal injury. Here, we overcome this fundamental problem of anatomy and biology with the use of the oral EGLN inhibitor FG-4592, which selectively protects the intestinal tract from radiation toxicity without protecting tumors. A total of 70 KPC mice with autochthonous pancreatic tumors received oral FG-4592 or vehicle control ± ablative RT to a cumulative 75 Gy administered in 15 daily fractions to a limited tumor field. Although ablative RT reduced complications from local tumor progression, fatal gastrointestinal bleeding was observed in 56% of mice that received high-dose RT with vehicle control. However, radiation-induced bleeding was completely ameliorated in mice that received high-dose RT with FG-4592 (0% bleeding, P < 0.0001 compared with vehicle). Furthermore, FG-4592 reduced epithelial apoptosis by half (P = 0.002) and increased intestinal microvessel density by 80% compared with vehicle controls. EGLN inhibition did not stimulate cancer growth, as treatment with FG-4592 alone, or overexpression of HIF2 within KPC tumors independently improved survival. Thus, we provide a proof of concept for the selective protection of the intestinal tract by the EGLN inhibition to enable ablative doses of cytotoxic therapy in unresectable pancreatic cancer by reducing untoward morbidity and death from radiation-induced gastrointestinal bleeding. SIGNIFICANCE: Selective protection of the intestinal tract by EGLN inhibition enables potentially definitive doses of radiation therapy. This might allow radiation to be a surgical surrogate for unresectable pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2327/F1.large.jpg.
Collapse
Affiliation(s)
- Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanqing Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amit Deorukhkar
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Baseler
- Department of Veterinary Medicine & Surgery, UT MD Anderson Cancer Center, Houston, Texas
| | - Marimar de la Cruz Bonilla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meifang Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonal Gupta
- Department of Pathology, UT MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, Texas
| | - Peter K Cabeceiras
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles V Kingsley
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Ramesh C Tailor
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, UT MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Nagaraju GP, Zakka KM, Landry JC, Shaib WL, Lesinski GB, El-Rayes BF. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int J Cancer 2019; 145:1529-1537. [PMID: 30801702 DOI: 10.1002/ijc.32227] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Resistance of pancreatic ductal adenocarcinoma (PDAC) to radiotherapy and chemotherapy represents a significant clinical issue. Although the mechanisms of resistance are multi-faceted, client proteins of heat shock protein 90 (HSP90) such as hypoxia induced factor-1α (HIF-1α) have a central role in this process. The purpose of this investigation was to evaluate inhibition of HSP90 as a therapeutic strategy for radiosensitization in pancreatic cancer. Ganetespib, a selective inhibitor of HSP90, was evaluated as a radio-sensitizer in setting of PDAC. Inhibition of HSP90 by ganetespib potentiated the ability of radiation therapy to limit cell proliferation and colony formation in vitro. HIF-1α expression was upregulated by irradiation and HIF-1α-overexpressing stable cell lines were resistant to radiation. Inhibition of HSP90 with ganetespib reversed the effects of HIF-1α overexpression, by reducing signaling via proliferative, angiogenic and anti-apoptotic pathways. The potentiation of the antitumor effects of chemoradiotherapy by ganetespib and modulation of key pathways (e.g. HIF-1α, STAT3, and AKT) was confirmed in vivo in nude mice bearing HPAC xenograft tumors. These novel data highlight HIF-1α-mediated mechanisms of HSP90 inhibition that sensitize PDAC cells to chemoradiotherapy. This pathway and its pleiotropic effects warrant further evaluation in concert with conventional therapy in pancreatic cancer clinical trials.
Collapse
Affiliation(s)
| | - Katerina M Zakka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jerome C Landry
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Walid L Shaib
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
16
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Parkkila S, Saarnio J, Lehenkari PP, Karttunen TJ. Weak HIF-1alpha expression indicates poor prognosis in resectable pancreatic ductal adenocarcinoma. World J Surg Oncol 2018; 16:127. [PMID: 29973215 PMCID: PMC6033289 DOI: 10.1186/s12957-018-1432-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIF-1alpha and CAIX proteins are commonly expressed under hypoxic conditions, but other regulatory factors have been described as well. Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and strong stromal reaction and has a dismal prognosis with the currently available treatment modalities. METHODS We investigated the expression and prognostic role of HIF-1alpha and CAIX in PDAC series from Northern Finland (n = 69) using immunohistochemistry. RESULTS In our PDAC cases, 95 and 85% showed HIF-1alpha and CAIX expression, respectively. Low HIF-1alpha expression correlated with poor prognosis, and multivariate analysis identified weak HIF-1alpha intensity as an independent prognostic factor for PDAC-specific deaths (HR 2.176, 95% CI 1.216-3.893; p = 0.009). There was no correlation between HIF-1alpha and CAIX expression levels, and the latter did not relate with survival. CONCLUSIONS Our findings are in contrast with previous research by finding an association between low HIF-1alpha and poor prognosis. The biological mechanisms remain speculative, but such an unexpected relation with prognosis and absence of correlation between HIF-1alpha and CAIX suggests that the prognostic association of HIF-1alpha may not directly be linked with hypoxia. Accordingly, the role of HIF-1alpha might be more complex than previously thought and the use of this marker as a hypoxia-related prognostic factor should be addressed with caution.
Collapse
Affiliation(s)
- Joni Leppänen
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
- 0000 0001 0941 4873grid.10858.34Department of Pathology, University of Oulu, PO-Box 5000, 90014 Oulu, Finland
| | - Olli Helminen
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Heikki Huhta
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Joonas H. Kauppila
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
- 0000 0004 1937 0626grid.4714.6Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Joel Isohookana
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Kirsi-Maria Haapasaari
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Seppo Parkkila
- 0000 0001 2314 6254grid.5509.9School of Medicine, University of Tampere, 33014 Tampere, Finland
- 0000 0004 0628 2985grid.412330.7Fimlab Ltd, Tampere University Hospital, 33520 Tampere, Finland
| | - Juha Saarnio
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Petri P. Lehenkari
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Tuomo J. Karttunen
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| |
Collapse
|
17
|
Weaver JR, Casellini CM, Parson HK, Vinik AI. Expression of HIF-1α in A Pancreatic Ductal Adenocarcinoma in A Patient with Newly Diagnosed Type 2 Diabetes. AACE Clin Case Rep 2018. [DOI: 10.4158/accr-2017-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Colbert LE, Moningi S, Chadha A, Amer A, Lee Y, Wolff RA, Varadhachary G, Fleming J, Katz M, Das P, Krishnan S, Koay EJ, Park P, Crane CH, Taniguchi CM. Dose escalation with an IMRT technique in 15 to 28 fractions is better tolerated than standard doses of 3DCRT for LAPC. Adv Radiat Oncol 2017; 2:403-415. [PMID: 29114609 PMCID: PMC5605283 DOI: 10.1016/j.adro.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 01/20/2023] Open
Abstract
Purpose To review acute and late toxicities after chemoradiation for locally advanced pancreatic ductal adenocarcinoma in patients who were treated with escalated dose radiation (EDR). Methods and materials Maximum Common Terminology Criteria for Adverse Events Version 4.0 acute toxicities (AT) during radiation and within 60 days after radiation were recorded for both acute gastrointestinal toxicity and overall toxicity (OT). Late toxicities were also recorded. EDR was generally delivered with daily image guidance and breath-hold techniques using intensity modulated radiation therapy (IMRT) planning. These were compared with patients who received standard dose radiation (SDR) delivered as 50.4 Gy in 28 fractions using 3-dimensional chemoradiation therapy planning. Results A total of 59 of 154 patients (39%) received EDR with biologically equivalent doses >70 Gy. The most frequent schedules were 63 Gy in 28 fractions (19 of 154 patients), 67.5 Gy in 15 fractions (10 of 154 patients), and 70 Gy in 28 fractions (15 of 154 patients). No grade 4 or grade 5 OT or late toxicities were reported. Rates of grade 3 acute gastrointestinal toxicity were significantly lower in patients who received EDR compared with SDR (1% vs 14%; P < .001). Similarly, rates of grade 3 OT were also lower for EDR compared with SDR (4% vs 16%; P = .004). The proportion of patients who experienced no AT was higher in the EDR group than the SDR group (36% vs 15%; P = .001). For EDR patients treated with IMRT, a lower risk of AT was associated with a later treatment year (P = .007), nonpancreatic head tumor location (P = .01), breath-hold (P = .002), 4-dimensional computed tomography (P = .003), computed tomography on rails (P = .002), and lower stomach V40 (P = .03). With a median time of 12 months (range, 1-79 months) from the start of radiation therapy to the last known follow-up in the EDR group, 51 of 59 patients (86%) had no late toxicity. Six of 59 EDR patients (10%) had either strictures or gastrointestinal bleeding that required intervention. No significant predictors of late toxicity were identified. Conclusion Overall acute and late toxicity rates were low with EDR using an IMRT technique with image guidance and respiratory gating.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Shalini Moningi
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Awalpreet Chadha
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Ahmed Amer
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Yeonju Lee
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Gauri Varadhachary
- Department of Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Jason Fleming
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Matthew Katz
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Sunil Krishnan
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Peter Park
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Cullen M Taniguchi
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
In vivo functional dissection of a context-dependent role for Hif1α in pancreatic tumorigenesis. Oncogenesis 2016; 5:e278. [PMID: 27941931 PMCID: PMC5177776 DOI: 10.1038/oncsis.2016.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 01/25/2023] Open
Abstract
Hypoxia-inducible factor 1α (Hif1α) is a key regulator of cellular adaptation and survival under hypoxic conditions. In pancreatic ductal adenocarcinoma (PDAC), it has been recently shown that genetic ablation of Hif1α accelerates tumour development by promoting tumour-supportive inflammation in mice, questioning its role as the key downstream target of many oncogenic signals of PDAC. Likely, Hif1α has a context-dependent role in pancreatic tumorigenesis. To further analyse this, murine PDAC cell lines with reduced Hif1α expression were generated using shRNA transfection. Cells were transplanted into wild-type mice through orthotopic or portal vein injection in order to test the in vivo function of Hif1α in two major tumour-associated biological scenarios: primary tumour growth and remote colonization/metastasis. Although Hif1α protects PDAC cells from stress-induced cell deaths in both scenarios-in line with the general function Hif1α-its depletion leads to different oncogenic consequences. Hif1α depletion results in rapid tumour growth with marked hypoxia-induced cell death, which potentially leads to a persistent tumour-sustaining inflammatory response. However, it simultaneously reduces tumour colonization and hepatic metastases by increasing the susceptibility to anoikis induced by anchorage-independent conditions. Taken together, the role of Hif1α in pancreatic tumorigenesis is context-dependent. Clinical trials of Hif1α inhibitors need to take this into account, targeting the appropriate scenario, for example palliative vs adjuvant therapy.
Collapse
|
21
|
Diana A, Wang LM, D'Costa Z, Azad A, Silva MA, Soonawalla Z, Allen P, Liu S, McKenna WG, Muschel RJ, Fokas E. Prognostic role and correlation of CA9, CD31, CD68 and CD20 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget 2016; 7:72819-72832. [PMID: 27637082 PMCID: PMC5341946 DOI: 10.18632/oncotarget.12022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
We assessed the prognostic value of hypoxia (carbonic anhydrase 9; CA9), vessel density (CD31), with macrophages (CD68) and B cells (CD20) that can interact and lead to immune suppression and disease progression using scanning and histological mapping of whole-mount FFPE pancreatectomy tissue sections from 141 primarily resectable pancreatic ductal adenocarcinoma (PDAC) samples treated with surgery and adjuvant chemotherapy. Their expression was correlated with clinicopathological characteristics, and overall survival (OS), progression-free survival (PFS), local progression-free survival (LPFS) and distant metastases free-survival (DMFS), also in the context of stroma density (haematoxylin-eosin) and activity (alpha-smooth muscle actin). The median OS was 21 months after a mean follow-up of 20 months (range, 2-69 months). The median tumor surface area positive for CA9 and CD31 was 7.8% and 8.1%, respectively. Although total expression of these markers lacked prognostic value in the entire cohort, nevertheless, high tumor compartment CD68 expression correlated with worse PFS (p = 0.033) and DMFS (p = 0.047). Also, high CD31 expression predicted for worse OS (p = 0.004), PFS (p = 0.008), LPFS (p = 0.014) and DMFS (p = 0.004) in patients with moderate density stroma. High stromal and peripheral compartment CD68 expression predicted for significantly worse outcome in patients with loose and moderate stroma density, respectively. Altogether, in contrast to the current notion, hypoxia levels in PDAC appear to be comparable to other malignancies. CD31 and CD68 constitute prognostic markers in patient subgroups that vary according to tumor compartment and stromal density. Our study provides important insight on the pathophysiology of PDAC and should be exploited for future treatments.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, CD20/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor
- Carbonic Anhydrase IX/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/therapy
- Combined Modality Therapy
- Female
- Humans
- Hypoxia/metabolism
- Immunohistochemistry
- Macrophages/metabolism
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Neovascularization, Pathologic/metabolism
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/therapy
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Prognosis
- Stromal Cells/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Angela Diana
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Lai Mun Wang
- Department of Pathology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Michael A. Silva
- Department of Surgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Zahir Soonawalla
- Department of Surgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Paul Allen
- Department of Pathology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Stanley Liu
- Department of Radiation Oncology, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - W. Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ruth J. Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Current Address: Department of Radiotherapy and Oncology, Goethe University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
22
|
Shultz DB, Pai J, Chiu W, Ng K, Hellendag MG, Heestand G, Chang DT, Tu D, Moore MJ, Parulekar WR, Koong AC. A Novel Biomarker Panel Examining Response to Gemcitabine with or without Erlotinib for Pancreatic Cancer Therapy in NCIC Clinical Trials Group PA.3. PLoS One 2016; 11:e0147995. [PMID: 26808546 PMCID: PMC4725948 DOI: 10.1371/journal.pone.0147995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/10/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose NCIC Clinical Trials Group PA.3 was a randomized control trial that demonstrated improved overall survival (OS) in patients receiving erlotinib in addition to gemcitabine for locally advanced or metastatic pancreatic cancer. Prior to therapy, patients had plasma samples drawn for future study. We sought to identify biomarkers within these samples. Experimental Design Using the proximity ligation assay (PLA), a probe panel was built from commercially available antibodies for 35 key proteins selected from a global genetic analysis of pancreatic cancers, and used to quantify protein levels in 20 uL of patient plasma. To determine if any of these proteins levels independently associated with OS, univariate and mulitbaraible Cox models were used. In addition, we examined the associations between biomarker expression and disease stage at diagnosis using Fisher's exact test. The correlation between Erlotinib sensitivity and each biomarkers was assessed using a test of interaction between treatment and biomarker. Results and Conclusion Of the 569 eligible patients, 480 had samples available for study. Samples were randomly allocated into training (251) and validation sets (229). Among all patients, elevated levels of interleukin-8 (IL-8), carcinoembryonic antigen (CEA), hypoxia-inducible factor 1-alpha (HIF-1 alpha), and interleukin-6 were independently associated with lower OS, while IL-8, CEA, platelet-derived growth factor receptor alpha and mucin-1 were associated with metastatic disease. Patients with elevated levels of receptor tyrosine-protein kinase erbB-2 (HER2) expression had improved OS when treated with erlotinib compared to placebo. In conclusion, PLA is a powerful tool for identifying biomarkers from archived, small volume serum samples. These data may be useful to stratify patient outcomes regardless of therapeutic intervention. Trial Registration ClinicalTrials.gov NCT00040183
Collapse
Affiliation(s)
| | - Jonathan Pai
- School of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Wayland Chiu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kendall Ng
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | | | - Gregory Heestand
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel T. Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Dongsheng Tu
- NCIC Clinical Trials Group, Queen's University, Kingston, Canada
| | - Malcolm J. Moore
- British Columbia Cancer Agency, Vancouver, British Columbia, CA, United States of America
| | | | - Albert C. Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Beane JD, House MG, Pitt SC, Kilbane EM, Hall BL, Parmar AD, Riall TS, Pitt HA. Distal pancreatectomy with celiac axis resection: what are the added risks? HPB (Oxford) 2015; 17. [PMID: 26201994 PMCID: PMC4557651 DOI: 10.1111/hpb.12453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Reported series of a distal pancreatectomy with celiac axis resection (DP-CAR) are either small or not adequately controlled. The aim of this analysis was to report a multicentre series of modified Appleby procedures with a comparison group to determine the relative operative risk. METHODS Data were gathered through the American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP) Pancreatectomy Demonstration Project. Over 14 months, 822 patients underwent a distal pancreatectomy at 43 institutions. Twenty of these patients (2.4%) also underwent a celiac axis resection. DP-CAR patients were matched by age, gender, BMI, serum albumin, ASA class, gland texture, duct size and pathology to 172 patients undergoing DP alone. RESULTS The majority of DP and DP-CAR patients had adenocarcinomas (61% and 60%). The median operative time for a DP alone was shorter than for a DP-CAR (207 versus 276 min, P < 0.01). Post-operative acute kidney injury (1% versus 10%, P < 0.03) and 30-day mortality were higher after a DP-CAR (1% versus 10%, P < 0.03). CONCLUSION A distal pancreatectomy with celiac axis resection is associated with increased operative time, post-operative acute kidney injury and a 10% operative mortality. The decision to offer a modified Appleby procedure for a body of pancreas tumour should be made with full disclosure of the increased risks.
Collapse
Affiliation(s)
- Joal D Beane
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA
| | - Michael G House
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA
| | - Susan C Pitt
- Washington University School of MedicineSt. Louis, MO, USA
| | - E Molly Kilbane
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA
| | - Bruce L Hall
- Washington University School of MedicineSt. Louis, MO, USA
| | | | | | - Henry A Pitt
- Temple University School of MedicinePhiladelphia, PA, USA
| |
Collapse
|