1
|
Gaudreault M, Hardcastle N, Jackson P, McIntosh L, Higgs B, Pryor D, Sidhom M, Dykyj R, Moore A, Kron T, Siva S. Dose-Effect Relationship of Kidney Function After SABR for Primary Renal Cell Carcinoma: TROG 15.03 FASTRACK II. Int J Radiat Oncol Biol Phys 2024; 120:648-654. [PMID: 38679212 DOI: 10.1016/j.ijrobp.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Stereotactic ablative body radiotherapy (SABR) is a novel option to treat primary renal cell carcinoma. However, a high radiation dose may be received by the treated kidney, which may affect its function posttreatment. This study investigates the dose-effect relationship of kidney SABR with posttreatment renal function. METHODS AND MATERIALS This was a prespecified secondary endpoint of the multicenter FASTRACK II (Focal Ablative STereotactic RAdiotherapy for Cancers of the Kidney phase II) clinical trial (National Clinical Trial 02613819). Patients received either 26 Gy in a single fraction (SF) for tumors with a maximal diameter of 4 cm or less or 42 Gy in 3 fractions (multifraction [MF]) for larger tumors. To determine renal function change, 99mTc-dimercaptosuccinic acid (DMSA) single-photon emission computed tomography/computed tomography (SPECT/CT) scans were acquired, and the glomerular filtration rate was estimated at baseline, 12, and 24 months posttreatment. Imaging data sets were rigidly registered to the planning CT where kidneys were segmented to calculate dose-response curves. RESULTS From 71 enrolled patients, 36 (51%) and 26 (37%) patients were included in this study based on availability of posttreatment data at 12 and 24 months, respectively. The ipsilateral kidney glomerular filtration rate decreased from baseline by 42% and 39% in the SF cohort and by 45% and 62% in the MF cohort, at 12 and 24 months, respectively (P < .03). The loss in renal function was 3.6%/Gy ± 0.8%/Gy and 4.5%/Gy ± 1.0%/Gy in the SF cohort and 1.7%/Gy ± 0.1%/Gy and 1.7%/Gy ± 0.2%/Gy in the MF cohort at 12 and 24 months, respectively. The major loss in renal function occurred in high-dose regions, where dose-response curves converged to a plateau. CONCLUSIONS For the first time in a multicenter study, the dose-effect relationship at 12 and 24 months post-SABR treatment for primary renal cell carcinoma was quantified. Kidney function reduces linearly with dose up to 100 Gy BED3.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia.
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Price Jackson
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Braden Higgs
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia; University of South Australia, South Australia, Australia
| | - David Pryor
- Princess Alexandra Hospital, Queensland, Australia
| | - Mark Sidhom
- Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Rachael Dykyj
- Trans Tasman Radiation Oncology Group, Waratah, New South Wales, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group, Waratah, New South Wales, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Midroni J, Salunkhe R, Liu Z, Chow R, Boldt G, Palma D, Hoover D, Vinogradskiy Y, Raman S. Incorporation of Functional Lung Imaging Into Radiation Therapy Planning in Patients With Lung Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2024; 120:370-408. [PMID: 38631538 DOI: 10.1016/j.ijrobp.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Our purpose was to provide an understanding of current functional lung imaging (FLI) techniques and their potential to improve dosimetry and outcomes for patients with lung cancer receiving radiation therapy (RT). Excerpta Medica dataBASE (EMBASE), PubMed, and Cochrane Library were searched from 1990 until April 2023. Articles were included if they reported on FLI in one of: techniques, incorporation into RT planning for lung cancer, or quantification of RT-related outcomes for patients with lung cancer. Studies involving all RT modalities, including stereotactic body RT and particle therapy, were included. Meta-analyses were conducted to investigate differences in dose-function parameters between anatomic and functional RT planning techniques, as well as to investigate correlations of dose-function parameters with grade 2+ radiation pneumonitis (RP). One hundred seventy-eight studies were included in the narrative synthesis. We report on FLI modalities, dose-response quantification, functional lung (FL) definitions, FL avoidance techniques, and correlations between FL irradiation and toxicity. Meta-analysis results show that FL avoidance planning gives statistically significant absolute reductions of 3.22% to the fraction of well-ventilated lung receiving 20 Gy or more, 3.52% to the fraction of well-perfused lung receiving 20 Gy or more, 1.3 Gy to the mean dose to the well-ventilated lung, and 2.41 Gy to the mean dose to the well-perfused lung. Increases in the threshold value for defining FL are associated with decreases in functional parameters. For intensity modulated RT and volumetric modulated arc therapy, avoidance planning results in a 13% rate of grade 2+ RP, which is reduced compared with results from conventional planning cohorts. A trend of increased predictive ability for grade 2+ RP was seen in models using FL information but was not statistically significant. FLI shows promise as a method to spare FL during thoracic RT, but interventional trials related to FL avoidance planning are sparse. Such trials are critical to understanding the effect of FL avoidance planning on toxicity reduction and patient outcomes.
Collapse
Affiliation(s)
- Julie Midroni
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada
| | - Rohan Salunkhe
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zhihui Liu
- Biostatistics, Princess Margaret Cancer Center, Toronto, Canada
| | - Ronald Chow
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Gabriel Boldt
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - David Palma
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Douglas Hoover
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, United States of America; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, United States of America
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Gaudreault M, Bucknell N, Woon B, Kron T, Hofman MS, Siva S, Hardcastle N. Dose-Response Relationship Between Radiation Therapy and Loss of Lung Perfusion Comparing Positron Emission Tomography and Dual-Energy Computed Tomography in Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1135-1143. [PMID: 37914141 DOI: 10.1016/j.ijrobp.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Radiation therapy treatment for non-small cell lung cancer (NSCLC) may result in radiation damage to the perfused lung. The loss in perfusion may be measured from positron tomography emission (PET) perfusion imaging; however, this modality may not be widely available. Dual-energy computed tomography (DECT) with contrast may be an alternative to PET/CT. The purpose of this work is to investigate the equivalence of dose-response curves (DRCs) determined from PET and DECT in NSCLC. METHODS AND MATERIALS PET and DECT data sets from the prospective clinical trial HI-FIVE (NTC03569072) were included in this preplanned trial analysis. Patients underwent 68Ga-macroaggregated albumin PET/CT examination and DECT with contrast on the same day at baseline and at 3 and 12 months after treatment. The perfused lung was defined from a threshold based on the maximum standardized uptake value (%SUVmax)/iodine concentration (%IoMax) in PET/DECT. The equivalence between PET and DECT DRC was established by comparing (1) the average of the normalized overlap of the 2 DRCs ranging from 0 (no overlap) to 1 (perfect overlap) and (2) the slope of a linear model applied to DRCs. RESULTS Of the 19 patients enrolled in the clinical trial, 14/10 patients had a posttreatment imaging session at a median of 4.5/13.5 months, respectively. With 30%SUVmax/35%IoMax, the average normalized overlap was maximized, and the difference between PET and DECT slopes of the linear model was minimized at each time point (slope = 0.76%/Gy / 0.75%/Gy at 3 months and 0.86%/Gy / 0.87%/Gy at 12 months determined from PET/DECT). CONCLUSIONS The dose-response relationship determined from DECT was comparable to that from PET at 3 and 12 months after treatment in patients with NSCLC.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Nicholas Bucknell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Beverley Woon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Imaging and Therapeutic Nuclear Medicine, Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Blanc-Béguin F, Damien P, Floch R, Kerleguer K, Hennebicq S, Robin P, Salaün PY, Le Roux PY. Radiation exposure to nuclear medicine technologists performing a V/Q PET: Comparison with conventional V/Q scintigraphy, [18F]FDG PET and [68Ga]Ga DOTATOC PET procedures. Front Med (Lausanne) 2022; 9:1051249. [DOI: 10.3389/fmed.2022.1051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionVentilation/Perfusion (V/Q) PET/CT is an emerging imaging modality for regional lung function evaluation. The same carrier molecules as conventional V/Q scintigraphy are used but they are radiolabelled with gallium-68 (68Ga) instead of technetium-99m (99mTc). A recurrent concern regarding V/Q PET imaging is the radiation dose to the healthcare workers. The aim of this study was to evaluate the total effective dose and the finger dose received by the technologist when performing a V/Q PET procedure, and to compare them with the radiations doses received with conventional V/Q scintigraphy, FDG PET and Ga DOTATOC PET procedures.Materials and methodsThe whole body dose measurement was performed 10 times for each of the evaluated procedures using an electronic personal dosimeter (ED). For V/Q PET and V/Q scintigraphy procedures, ventilation and perfusion stages were separately evaluated. Internal exposure was measured for ventilation procedures. Finger dose measurements were performed 5 times for each of the PET procedures using Thermoluminescence (TL) pellets.ResultsThe technologist effective dose when performing a V/Q PET procedure was 2.83 ± 0.67 μSv, as compared with 1.16 ± 0.34 μSv for conventional V/Q scintigraphy, 2.13 ± 0.77 μSv for [68Ga]Ga-DOTATOC, and 2.86 ± 1.79 μSv for FDG PET procedures, respectively. The finger dose for the V/Q PET procedure was similar to the dose for a [68Ga]Ga-DOTATOC scan (0.35 mSv and 0.32 mSv, respectively).ConclusionThe technologist total effective dose for a V/Q PET procedure is ~2.4 higher than the dose for a conventional V/Q scintigraphy, but in the same range than the radiation exposure when performing common PET procedures, both in terms of total effective dose or finger dose. These results should be reassuring for the healthcare workers performing a V/Q PET procedure.
Collapse
|
5
|
Dossun C, Niederst C, Noel G, Meyer P. Evaluation of DIR algorithm performance in real patients for radiotherapy treatments: A systematic review of operator-dependent strategies. Phys Med 2022; 101:137-157. [PMID: 36007403 DOI: 10.1016/j.ejmp.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The performance of deformable medical image registration (DIR) algorithms has become a major concern. METHODS We aimed to obtain updated information on DIR algorithm performance quantification through a literature review of articles published between 2010 and 2022. We focused only on studies using operator-based methods to treat real patients. The PubMed, Google Scholar and Embase databases were searched following PRISMA guidelines. RESULTS One hundred and seven articles were identified. The mean number of patients and registrations per publication was 20 and 63, respectively. We found 23 different geometric metrics appearing at least twice, and the dosimetric impact of DIR was quantified in 32 articles. Forty-eight different at-risk organs were described, and target volumes were studied in 43 publications. Prostate, head-and-neck and thoracic locations represented more than ¾ of the studied locations. We summarized the type of DIR and the images used, and other key elements. Intra/interobserver variability, threshold values and the correlation between metrics were also discussed. CONCLUSIONS This literature review covers the past decade and should facilitate the implementation of DIR algorithms in clinical practice by providing practical and pertinent information to quantify their performance on real patients.
Collapse
Affiliation(s)
- C Dossun
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France
| | - C Niederst
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France
| | - G Noel
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France
| | - P Meyer
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France; ICUBE, CNRS UMR 7357, Team IMAGES, Strasbourg, France.
| |
Collapse
|
6
|
Blanc-Béguin F, Masset J, Robin P, Tripier R, Hennebicq S, Guilloux V, Vriamont C, Warnier C, Cogulet V, Eu P, Salaün PY, Le Roux PY. Fully Automated 68Ga-Labeling and Purification of Macroaggregated Albumin Particles for Lung Perfusion PET Imaging. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2021; 1:778191. [PMID: 39355632 PMCID: PMC11440869 DOI: 10.3389/fnume.2021.778191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 10/03/2024]
Abstract
Lung PET/CT is a promising imaging modality for regional lung function assessment. Our aim was to develop and validate a fast, simple, and fully automated GMP compliant [68Ga]Ga-MAA labeling procedure, using a commercially available [99mTc]Tc-MAA kit, a direct gallium-68 eluate and including a purification of the [68Ga]Ga-MAA. Method: The synthesis parameters (pH, heating temperature) were manually determined. Automated 68Ga-labeling of MAA was then developed on a miniAIO (Trasis®, Ans, Belgium) module. An innovative automated process was developed for the purification. The process was then optimized and adapted to automate both the [68Ga]Ga-MAA synthesis and the isolation of gallium-68 eluate required for the pulmonary ventilation PET/CT. Results: The 15-min process demonstrated high reliability and reproducibility, with high synthesis yield (>95 %). Mean [68Ga]Ga-MAA radiochemical purity was 99 % ± 0.6 %. The 68Ga-labeled MAA particles size and morphology remained unchanged. Conclusion: A fast, user friendly, and fully automated process to produce GMP [68Ga]Ga-MAA for clinical use was developed. This automated process combining the advantages of using a non-modified MAA commercial kit, a gallium-68 eluate without pre-purification and an efficient final purification of the [68Ga]Ga-MAA may facilitate the implementation of lung PET/CT imaging in nuclear medicine departments.
Collapse
Affiliation(s)
| | | | - Philippe Robin
- Medecine Nucleaire, CHRU Brest, EA3878 (GETBO) IFR 148, Univ Brest, Brest, France
| | | | - Simon Hennebicq
- Medecine Nucleaire, CHRU Brest, EA3878 (GETBO) IFR 148, Univ Brest, Brest, France
| | - Valérie Guilloux
- Medecine Nucleaire, CHRU Brest, Brest, France
- Univ Brest, EA3878 (GETBO), INSERM 1078, Brest, France
| | | | | | | | - Peter Eu
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Pierre-Yves Salaün
- Medecine Nucleaire, CHRU Brest, EA3878 (GETBO) IFR 148, Univ Brest, Brest, France
| | - Pierre-Yves Le Roux
- Medecine Nucleaire, CHRU Brest, EA3878 (GETBO) IFR 148, Univ Brest, Brest, France
| |
Collapse
|
7
|
Lucia F, Rehn M, Blanc-Béguin F, Le Roux PY. Radiation Therapy Planning of Thoracic Tumors: A Review of Challenges Associated With Lung Toxicities and Potential Perspectives of Gallium-68 Lung PET/CT Imaging. Front Med (Lausanne) 2021; 8:723748. [PMID: 34513884 PMCID: PMC8429617 DOI: 10.3389/fmed.2021.723748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the introduction of new radiotherapy techniques, such as intensity modulated radiation therapy or stereotactic body radiation therapy, radiation induced lung injury remains a significant treatment related adverse event of thoracic radiation therapy. Functional lung avoidance radiation therapy is an emerging concept in the treatment of lung disease to better preserve lung function and to reduce pulmonary toxicity. While conventional ventilation/perfusion (V/Q) lung scintigraphy is limited by a relatively low spatial and temporal resolution, the recent advent of 68Gallium V/Q lung PET/CT imaging offers a potential to increase the accuracy of lung functional mapping and to better tailor lung radiation therapy plans to the individual's lung function. Lung PET/CT imaging may also improve our understanding of radiation induced lung injury compared to the current anatomical based dose–volume constraints. In this review, recent advances in radiation therapy for the management of primary and secondary lung tumors and in V/Q PET/CT imaging for the assessment of functional lung volumes are reviewed. The new opportunities and challenges arising from the integration of V/Q PET/CT imaging in radiation therapy planning are also discussed.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, Brest, France
| | - Martin Rehn
- Radiation Oncology Department, University Hospital, Brest, France
| | - Frédérique Blanc-Béguin
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| | - Pierre-Yves Le Roux
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| |
Collapse
|
8
|
Khalil AA, Hau E, Gebski V, Grau C, Gee H, Nyeng TB, West K, Kramer S, Farlow D, Knap M, Møller DS, Hoffmann L, Farr KP. Personal innovative approach in radiation therapy of lung cancer- functional lung avoidance SPECT-guided (ASPECT) radiation therapy: a study protocol for phase II randomised double-blind clinical trial. BMC Cancer 2021; 21:940. [PMID: 34418994 PMCID: PMC8379730 DOI: 10.1186/s12885-021-08663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Radiation therapy (RT) plays a key role in curative-intent treatment for locally advanced lung cancer. Radiation induced pulmonary toxicity can be significant for some patients and becomes a limiting factor for radiation dose, suitability for treatment, as well as post treatment quality of life and suitability for the newly introduced adjuvant immunotherapy. Modern RT techniques aim to minimise the radiation dose to the lungs, without accounting for regional distribution of lung function. Many lung cancer patients have significant regional differences in pulmonary function due to smoking and chronic lung co-morbidity. Even though reduction of dose to functional lung has shown to be feasible, the method of preferential functional lung avoidance has not been investigated in a randomised clinical trial. METHODS In this study, single photon emission computed tomography (SPECT/CT) imaging technique is used for functional lung definition, in conjunction with advanced radiation dose delivery method in randomised, double-blind trial. The study aims to assess the impact of functional lung avoidance technique on pulmonary toxicity and quality of life in patients receiving chemo-RT for lung cancer. Eligibility criteria are biopsy verified lung cancer, scheduled to receive (chemo)-RT with curative intent. Every patient will undergo a pre-treatment perfusion SPECT/CT to identify functional lung. At radiation dose planning, two plans will be produced for all patients on trial. Standard reference plan, without the use of SPECT imaging data, and functional avoidance plan, will be optimised to reduce the dose to functional lung within the predefined constraints. Both plans will be clinically approved. Patients will then be randomised in a 2:1 ratio to be treated according to either the functional avoidance or the standard plan. This study aims to accrue a total of 200 patients within 3 years. The primary endpoint is symptomatic radiation-induced lung toxicity, measured serially 1-12 months after RT. Secondary endpoints include: a quality of life and patient reported lung symptoms assessment, overall survival, progression-free survival, and loco-regional disease control. DISCUSSION ASPECT trial will investigate functional avoidance method of radiation delivery in clinical practice, and will establish toxicity outcomes for patients with lung cancer undergoing curative chemo-RT. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT04676828 . Registered 1 December 2020.
Collapse
Affiliation(s)
| | - Eric Hau
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney West Radiation Oncology Network, Westmead, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW Australia
- Westmead Institute for Medical Research, Westmead, NSW Australia
| | - Val Gebski
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney West Radiation Oncology Network, Westmead, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, 2050 Australia
| | - Cai Grau
- Aarhus University Hospital, Aarhus, Denmark
| | - Harriet Gee
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney West Radiation Oncology Network, Westmead, Australia
- Westmead Institute for Medical Research, Westmead, NSW Australia
| | | | - Katrina West
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney West Radiation Oncology Network, Westmead, Australia
| | | | | | | | | | | | - Katherina P. Farr
- Aarhus University Hospital, Aarhus, Denmark
- Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| |
Collapse
|
9
|
McIntosh L, Jackson P, Hardcastle N, Bressel M, Kron T, Callahan JW, Steinfort D, Bucknell N, Hofman MS, Siva S. Automated assessment of functional lung imaging with 68Ga-ventilation/perfusion PET/CT using iterative histogram analysis. EJNMMI Phys 2021; 8:23. [PMID: 33677692 PMCID: PMC7937580 DOI: 10.1186/s40658-021-00375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Functional lung mapping from Ga68-ventilation/perfusion (V/Q) PET/CT, which has been shown to correlate with pulmonary function tests (PFTs), may be beneficial in a number of clinical applications where sparing regions of high lung function is of interest. Regions of clumping in the proximal airways in patients with airways disease can result in areas of focal intense activity and artefact in ventilation imaging. These artefacts may even shine through to subsequent perfusion images and create a challenge for quantitative analysis of PET imaging. We aimed to develop an automated algorithm that interprets the uptake histogram of PET images to calculate a peak uptake value more representative of the global lung volume. METHODS Sixty-six patients recruited from a prospective clinical trial underwent both V/Q PET/CT imaging and PFT analysis before treatment. PET images were normalised using an iterative histogram analysis technique to account for tracer hotspots prior to the threshold-based delineation of varying values. Pearson's correlation between fractional lung function and PFT score was calculated for ventilation, perfusion, and matched imaging volumes at varying threshold values. RESULTS For all functional imaging thresholds, only FEV1/FVC PFT yielded reasonable correlations to image-based functional volume. For ventilation, a range of 10-30% of adapted peak uptake value provided a reasonable threshold to define a volume that correlated with FEV1/FVC (r = 0.54-0.61). For perfusion imaging, a similar correlation was observed (r = 0.51-0.56) in the range of 20-60% adapted peak threshold. Matched volumes were closely linked to ventilation with a threshold range of 15-35% yielding a similar correlation (r = 0.55-0.58). CONCLUSIONS Histogram normalisation may be implemented to determine the presence of tracer clumping hotspots in Ga-68 V/Q PET imaging allowing for automated delineation of functional lung and standardisation of functional volume reporting.
Collapse
Affiliation(s)
- Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.
| | - Price Jackson
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Mathias Bressel
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia
| | - Jason W Callahan
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Daniel Steinfort
- Respiratory Medicine, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Nicholas Bucknell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Michael S Hofman
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| |
Collapse
|
10
|
Barber J, Yuen J, Jameson M, Schmidt L, Sykes J, Gray A, Hardcastle N, Choong C, Poder J, Walker A, Yeo A, Archibald‐Heeren B, Harrison K, Haworth A, Thwaites D. Deforming to Best Practice: Key considerations for deformable image registration in radiotherapy. J Med Radiat Sci 2020; 67:318-332. [PMID: 32741090 PMCID: PMC7754021 DOI: 10.1002/jmrs.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Image registration is a process that underlies many new techniques in radiation oncology - from multimodal imaging and contour propagation in treatment planning to dose accumulation throughout treatment. Deformable image registration (DIR) is a subset of image registration subject to high levels of complexity in process and validation. A need for local guidance to assist in high-quality utilisation and best practice was identified within the Australian community, leading to collaborative activity and workshops. This report communicates the current limitations and best practice advice from early adopters to help guide those implementing DIR in the clinic at this early stage. They are based on the state of image registration applications in radiotherapy in Australia and New Zealand (ANZ), and consensus discussions made at the 'Deforming to Best Practice' workshops in 2018. The current status of clinical application use cases is presented, including multimodal imaging, automatic segmentation, adaptive radiotherapy, retreatment, dose accumulation and response assessment, along with uptake, accuracy and limitations. Key areas of concern and preliminary suggestions for commissioning, quality assurance, education and training, and the use of automation are also reported. Many questions remain, and the radiotherapy community will benefit from continued research in this area. However, DIR is available to clinics and this report is intended to aid departments using or about to use DIR tools now.
Collapse
Affiliation(s)
- Jeffrey Barber
- Sydney West Radiation Oncology NetworkBlacktown and WestmeadNSWAustralia
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| | - Johnson Yuen
- St George Cancer Care CentreSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | - Michael Jameson
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | | | - Jonathan Sykes
- Sydney West Radiation Oncology NetworkBlacktown and WestmeadNSWAustralia
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| | - Alison Gray
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer CentreVictoriaAustralia
- Physical SciencesPeter MacCallum Cancer CentreVICAustralia
| | - Callie Choong
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
| | - Joel Poder
- St George Cancer Care CentreSydneyNSWAustralia
- Physical SciencesPeter MacCallum Cancer CentreVICAustralia
| | - Amy Walker
- Liverpool and Macarthur Cancer Therapy CentresSydneyNSWAustralia
- Ingham Institute for Applied Medical ResearchSydneyNSWAustralia
- South Western Clinical SchoolThe University of New South WalesSydneyNSWAustralia
| | - Adam Yeo
- Peter MacCallum Cancer CentreVictoriaAustralia
- RMIT UniversityMelbourneVICAustralia
| | | | | | - Annette Haworth
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| | - David Thwaites
- Sydney West Radiation Oncology NetworkBlacktown and WestmeadNSWAustralia
- Institute of Medical PhysicsUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
11
|
Rigaud B, Simon A, Castelli J, Lafond C, Acosta O, Haigron P, Cazoulat G, de Crevoisier R. Deformable image registration for radiation therapy: principle, methods, applications and evaluation. Acta Oncol 2019; 58:1225-1237. [PMID: 31155990 DOI: 10.1080/0284186x.2019.1620331] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Deformable image registration (DIR) is increasingly used in the field of radiation therapy (RT) to account for anatomical deformations. The aims of this paper are to describe the main applications of DIR in RT and discuss current DIR evaluation methods. Methods: Articles on DIR published from January 2000 to October 2018 were extracted from PubMed and Science Direct. Our search was restricted to articles that report data obtained from humans, were written in English, and address DIR methods for RT. A total of 207 articles were selected from among 2506 identified in the search process. Results: At planning, DIR is used for organ delineation using atlas-based segmentation, deformation-based planning target volume definition, functional planning and magnetic resonance imaging-based dose calculation. In image-guided RT, DIR is used for contour propagation and dose calculation on per-treatment imaging. DIR is also used to determine the accumulated dose from fraction to fraction in external beam RT and brachytherapy, both for dose reporting and adaptive RT. In the case of re-irradiation, DIR can be used to estimate the cumulated dose of the two irradiations. Finally, DIR can be used to predict toxicity in voxel-wise population analysis. However, the evaluation of DIR remains an open issue, especially when dealing with complex cases such as the disappearance of matter. To quantify DIR uncertainties, most evaluation methods are limited to geometry-based metrics. Software companies have now integrated DIR tools into treatment planning systems for clinical use, such as contour propagation and fraction dose accumulation. Conclusions: DIR is increasingly important in RT applications, from planning to toxicity prediction. DIR is routinely used to reduce the workload of contour propagation. However, its use for complex dosimetric applications must be carefully evaluated by combining quantitative and qualitative analyses.
Collapse
Affiliation(s)
- Bastien Rigaud
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Antoine Simon
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Joël Castelli
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Caroline Lafond
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Oscar Acosta
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Pascal Haigron
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | | |
Collapse
|
12
|
Le Roux PY, Iravani A, Callahan J, Burbury K, Eu P, Steinfort DP, Lau E, Woon B, Salaun PY, Hicks RJ, Hofman MS. Independent and incremental value of ventilation/perfusion PET/CT and CT pulmonary angiography for pulmonary embolism diagnosis: results of the PECAN pilot study. Eur J Nucl Med Mol Imaging 2019; 46:1596-1604. [PMID: 31044265 DOI: 10.1007/s00259-019-04338-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE This pilot study assessed the independent and incremental value of 68Ga-V/Q PET/CT as compared with CT pulmonary angiography (CTPA) for the management of cancer patients with suspected acute pulmonary embolism (PE). METHODS All 24 cancer patients with suspected acute PE prospectively recruited underwent both 68Ga-V/Q PET/CT and CTPA within 24 h. PET/CT was acquired after inhalation of Galligas prepared using a Technegas generator and administration of 68Ga-macroaggregated albumin. Initially, PET/CT and CTPA scans were read independently with the reader blinded to the results of the other imaging study. CTPA and PET/CT were then coregistered and reviewed by consensus between a radiologist and nuclear medicine physician. The therapeutic management was established by the managing physician based on all available data. RESULTS The diagnostic conclusion was concordantly negative in 18 patients (75%). Of the six discordant diagnoses on independent reading, combined interpretation of V/Q PET/CTPA enabled a consensus conclusion in two patients, excluding PE in one and confirming PE in the other, similar to the initial diagnostic conclusion of the V/Q PET/CT. Of the remaining four patients, three had a single subsegmental thrombus on CTPA but a negative V/Q PET/CT scan, and two of these did not receive long-term anticoagulation and did not have a venous thromboembolic event during a 3-year follow-up period. The third patient, along with a patient with a positive V/Q PET/CT scan but a negative CTPA scan, presented with acute complications preventing any conclusions with regard to the appropriateness of the V/Q PET/CT results in the management of PE. Overall, V/Q PET had an impact on management in four patients (17%). CONCLUSION In this pilot study, we demonstrated the feasibility and potential utility of V/Q PET/CT for the management of patients with suspected PE. V/Q PET/CT may be of particular relevance in patients with equivocal findings or isolated subsegmental findings on CTPA, adding further discriminatory information to allow important decision-making regarding the use or withholding of anticoagulation. Given the other advantages of V/Q PET/CT (reduced acquisition time, low radiation dose), and with the increasing availability of 68Ga generators, PET/CT is a potential replacement for V/Q SPECT/CT imaging.
Collapse
Affiliation(s)
- Pierre-Yves Le Roux
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Nuclear Medicine, Brest University Hospital, EA3878 (GETBO) IFR 148, Brest, France.
| | - Amir Iravani
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jason Callahan
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kate Burbury
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Peter Eu
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Daniel P Steinfort
- Respiratory Medicine, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Eddie Lau
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Beverly Woon
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Pierre-Yves Salaun
- Nuclear Medicine, Brest University Hospital, EA3878 (GETBO) IFR 148, Brest, France
| | - Rodney J Hicks
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael S Hofman
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
13
|
Le Roux PY, Hicks RJ, Siva S, Hofman MS. PET/CT Lung Ventilation and Perfusion Scanning using Galligas and Gallium-68-MAA. Semin Nucl Med 2019; 49:71-81. [DOI: 10.1053/j.semnuclmed.2018.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Paganelli C, Meschini G, Molinelli S, Riboldi M, Baroni G. “Patient-specific validation of deformable image registration in radiation therapy: Overview and caveats”. Med Phys 2018; 45:e908-e922. [DOI: 10.1002/mp.13162] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria; Politecnico di Milano; Milano 20133 Italy
| | - Giorgia Meschini
- Dipartimento di Elettronica, Informazione e Bioingegneria; Politecnico di Milano; Milano 20133 Italy
| | | | - Marco Riboldi
- Department of Medical Physics; Ludwig-Maximilians-Universitat Munchen; Munich 80539 Germany
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria; Politecnico di Milano; Milano 20133 Italy
- Centro Nazionale di Adroterapia Oncologica; Pavia 27100 Italy
| |
Collapse
|
15
|
A prospective study of the feasibility of FDG-PET/CT imaging to quantify radiation-induced lung inflammation in locally advanced non-small cell lung cancer patients receiving proton or photon radiotherapy. Eur J Nucl Med Mol Imaging 2018; 46:206-216. [PMID: 30229527 DOI: 10.1007/s00259-018-4154-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE This prospective study assessed the feasibility of 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) to quantify radiation-induced lung inflammation in patients with locally advanced non-small cell lung cancer (NSCLC) who received radiotherapy (RT), and compared the differences in inflammation in the ipsilateral and contralateral lungs following proton and photon RT. METHODS Thirty-nine consecutive patients with NSCLC underwent FDG-PET/CT imaging before and after RT on a prospective study. A novel quantitative approach utilized regions of interest placed around the anatomical boundaries of the lung parenchyma and provided lung mean standardized uptake value (SUVmean), global lung glycolysis (GLG), global lung parenchymal glycolysis (GLPG) and total lung volume (LV). To quantify primary tumor metabolic response to RT, an adaptive contrast-oriented thresholding algorithm was applied to measure metabolically active tumor volume (MTV), tumor uncorrected SUVmean, tumor partial volume corrected SUVmean (tumor-PVC-SUVmean), and total lesion glycolysis (TLG). Parameters of FDG-PET/CT scans before and after RT were compared using two-tailed paired t-tests. RESULTS All tumor parameters after either proton or photon RT decreased significantly (p < 0.001). Among the 21 patients treated exclusively with proton RT, no significant increase in PVC-SUVmean or PVC-GLPG was observed in ipsilateral lungs after the PVC parameters of primary tumor were subtracted (p = 0.114 and p = 0.453, respectively). Also, there were no significant increases in SUVmean or GLG of contralateral lungs of patients who received proton RT (p = 0.841, p = 0.241, respectively). In contrast, among the nine patients who received photon RT, there was a statistically significant increase in PVC-GLPG of ipsilateral lung (p < 0.001) and in GLG of contralateral (p = 0.036) lung. In the subset of nine patients who received a combined proton and photon RT, there was a statistically significant increase in PVC-GLPG of ipsilateral lung (p < 0.001). CONCLUSION Our data suggest less induction of inflammatory response in both the ipsilateral and contralateral lungs of patients treated with proton compared to photon or combined proton-photon RT.
Collapse
|
16
|
Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018; 129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
RATIONALE Advanced imaging techniques allow functional information to be derived and integrated into treatment planning. METHODS A systematic review was conducted with the primary objective to evaluate the ability of functional lung imaging to predict risk of radiation pneumonitis. Secondary objectives were to evaluate dose-response relationships on post treatment functional imaging and assess the utility in including functional lung information into treatment planning. A structured search for publications was performed following PRISMA guidelines and registered on PROSPERO. RESULTS 814 articles were screened against review criteria and 114 publications met criteria. Methods of identifying functional lung included using CT, MRI, SPECT and PET to image ventilation or perfusion. Six studies compared differences between functional and anatomical lung imaging at predicting radiation pneumonitis. These found higher predictive values using functional lung imaging. Twenty-one studies identified a dose-response relationship on post-treatment functional lung imaging. Nineteen planning studies demonstrated the ability of functional lung optimised planning techniques to spare regions of functional lung. Meta-analysis of these studies found that mean (95% CI) functional volume receiving 20 Gy was reduced by 4.2% [95% CI: 2.3: 6.0] and mean lung dose by 2.2 Gy [95% CI: 1.2: 3.3] when plans were optimised to spare functional lung. There was significant variation between publications in the definition of functional lung. CONCLUSION Functional lung imaging may have potential utility in radiation therapy planning and delivery, although significant heterogeneity was identified in approaches and reporting. Recommendations have been made based on the available evidence for future functional lung trials.
Collapse
|
17
|
Le Roux PY, Siva S, Callahan J, Claudic Y, Bourhis D, Steinfort DP, Hicks RJ, Hofman MS. Automatic delineation of functional lung volumes with 68Ga-ventilation/perfusion PET/CT. EJNMMI Res 2017; 7:82. [PMID: 29019109 PMCID: PMC5634989 DOI: 10.1186/s13550-017-0332-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/06/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Functional volumes computed from 68Ga-ventilation/perfusion (V/Q) PET/CT, which we have shown to correlate with pulmonary function test parameters (PFTs), have potential diagnostic utility in a variety of clinical applications, including radiotherapy planning. An automatic segmentation method would facilitate delineation of such volumes. The aim of this study was to develop an automated threshold-based approach to delineate functional volumes that best correlates with manual delineation. Thirty lung cancer patients undergoing both V/Q PET/CT and PFTs were analyzed. Images were acquired following inhalation of Galligas and, subsequently, intravenous administration of 68Ga-macroaggreted-albumin (MAA). Using visually defined manual contours as the reference standard, various cutoff values, expressed as a percentage of the maximal pixel value, were applied. The average volume difference and Dice similarity coefficient (DSC) were calculated, measuring the similarity of the automatic segmentation and the reference standard. Pearson's correlation was also calculated to compare automated volumes with manual volumes, and automated volumes optimized to PFT indices. RESULTS For ventilation volumes, mean volume difference was lowest (- 0.4%) using a 15%max threshold with Pearson's coefficient of 0.71. Applying this cutoff, median DSC was 0.93 (0.87-0.95). Nevertheless, limits of agreement in volume differences were large (- 31.0 and 30.2%) with differences ranging from - 40.4 to + 33.0%. For perfusion volumes, mean volume difference was lowest and Pearson's coefficient was highest using a 15%max threshold (3.3% and 0.81, respectively). Applying this cutoff, median DSC was 0.93 (0.88-0.93). Nevertheless, limits of agreement were again large (- 21.1 and 27.8%) with volume differences ranging from - 18.6 to + 35.5%. Using the 15%max threshold, moderate correlation was demonstrated with FEV1/FVC (r = 0.48 and r = 0.46 for ventilation and perfusion images, respectively). No correlation was found between other PFT indices. CONCLUSIONS To automatically delineate functional volumes with 68Ga-V/Q PET/CT, the most appropriate cutoff was 15%max for both ventilation and perfusion images. However, using this unique threshold systematically provided unacceptable variability compared to the reference volume and relatively poor correlation with PFT parameters. Accordingly, a visually adapted semi-automatic method is favored, enabling rapid and quantitative delineation of lung functional volumes with 68Ga-V/Q PET/CT.
Collapse
Affiliation(s)
- Pierre-Yves Le Roux
- Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia. .,Nuclear Medicine Department, Brest University Hospital, EA3878 (GETBO) IFR, 148, Brest, France. .,Service de médecine nucléaire, CHRU de Brest, 29609, Brest CEDEX, France.
| | - Shankar Siva
- Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Jason Callahan
- Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
| | - Yannis Claudic
- Nuclear Medicine Department, Brest University Hospital, EA3878 (GETBO) IFR, 148, Brest, France
| | - David Bourhis
- Nuclear Medicine Department, Brest University Hospital, EA3878 (GETBO) IFR, 148, Brest, France
| | - Daniel P Steinfort
- Respiratory Medicine, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Rodney J Hicks
- Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Michael S Hofman
- Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia. .,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
18
|
Le Roux PY, Leong TL, Barnett SA, Hicks RJ, Callahan J, Eu P, Manser R, Hofman MS. Gallium-68 perfusion positron emission tomography/computed tomography to assess pulmonary function in lung cancer patients undergoing surgery. Cancer Imaging 2016; 16:24. [PMID: 27544383 PMCID: PMC4992565 DOI: 10.1186/s40644-016-0081-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Pre-operative evaluation of lung cancer patients relies on calculation of predicted post-operative (PPO) lung function based on split lung function testing. Pulmonary perfusion (Q) PET/CT can now be performed by substituting Technetium-99 m labeling of macroaggregated albumin (MAA) with Gallium-68. This study compares Q PET/CT with current recommended methods of pre-operative lung function assessment. Methods Twenty-two patients planned for curative surgical resection (mean FEV1 77 %, SD 21 %; mean DLCO 66 %, SD 17 % predicted) underwent pre-operative Q PET/CT. Sixteen patients also underwent conventional lung scintigraphy. Lobar and lung split PPO lung function were calculated using Q PET/CT and current recommended methods, i.e. calculation based on anatomical segments for lobar function, and conventional perfusion scan for pneumonectomy. Bland-Altman statistics were used to calculate agreement between methods for PPO FEV1 and PPO DLCO. Results While mean split lobar functions were comparable, there was variation on an individual level between Q PET/CT and the anatomical method, with absolute difference over 5 % and 10 % in 37 % and 11 % of patients, respectively. For lobectomy the mean difference in PPO FEV1 was−1.2, but limits of agreement were−10 to 8.1 %. For DLCO, values were−1.1 % and−9.7 to 7.5 %, respectively. For pneumonectomy, PPO FEV1 values were−0.4 and−5.9 to 5.1 %. For DLCO, values were 0.3 % and−5.1 to 4.6 %. Conclusions While anatomic estimation provides “fixed” results, split lobar functions computed with Q PET/CT vary widely, reflecting the intra and inter-individual variability of regional lung function. Further studies to assess the role of Q PET/CT in predicting peri-operative risk in lung cancer patients planned for lobectomy are warranted.
Collapse
Affiliation(s)
- Pierre-Yves Le Roux
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia. .,Nuclear Medicine department, Brest University Hospital, EA3878 (GETBO) IFR 148, Brest, France. .,Service de médecine nucléaire, CHRU de Brest, 29609, Brest Cedex, France.
| | | | - Stephen A Barnett
- The University of Melbourne, Parkville, Australia.,Department of Surgery, Austin Health, Heidelberg, Australia.,Department of Surgery, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia
| | - Rodney J Hicks
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia.,The University of Melbourne, Parkville, Australia
| | - Jason Callahan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia
| | - Peter Eu
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia
| | - Renee Manser
- Department of Cancer Medicine, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia.,Department of Respiratory Medicine, Royal Melbourne Hospital, Grattan Street, Parkville, VIC, Australia
| | - Michael S Hofman
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC, 3002, Australia. .,The University of Melbourne, Parkville, Australia.
| |
Collapse
|
19
|
De Bari B, Deantonio L, Bourhis J, Prior JO, Ozsahin M. Should we include SPECT lung perfusion in radiotherapy treatment plans of thoracic targets? Evidences from the literature. Crit Rev Oncol Hematol 2016; 102:111-7. [PMID: 27132077 DOI: 10.1016/j.critrevonc.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To report the available data about the potential impact of integrating lung perfusion SPECT/CT in treatment plans optimization for the irradiation of thoracic targets. MATERIALS AND METHODS We searched in the PubMed and Scopus databases, English-written articles published from 2000 to June 2015 dealing with the integration of perfusion SPECT/CT in radiotherapy. RESULTS We found and analyzed 16 research articles (10 dosimetric, 6 clinical) for a total of 578 patients. Available data suggest dosimetric and clinical improvements when perfusion SPEC/CT is integrated in the radiotherapy treatment planing of selected patients with thoracic targets. In particular, patients presenting emphysema and/or large areas of deficit of perfusion show the most important improvements. Moreover, some studies show different risk of radiation pneumonitis (RP) depending on the localization of the tumor in the lungs: patients with low-located tumors, present an increased risk of RP, and functional data could be a benefit in treatment plan optimization. Unfortunately, none of the available studies finally reports any dosimetric constraint, which could be used in the clinical practice, even if most of them used the cut-off of the 30% of the maximal perfusion value to define the well-functioning lung. CONCLUSIONS Published data support the integration of lung perfusion scintigraphy in some selected categories of patients. Prospective studies should be designed to define the best candidates, and to assess the clinical advantage of this kind of optimization.
Collapse
Affiliation(s)
- Berardino De Bari
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Letizia Deantonio
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Medicine Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Mahmut Ozsahin
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland.
| |
Collapse
|
20
|
Siva S, Hardcastle N, Kron T, Bressel M, Callahan J, MacManus MP, Shaw M, Plumridge N, Hicks RJ, Steinfort D, Ball DL, Hofman MS. Ventilation/Perfusion Positron Emission Tomography--Based Assessment of Radiation Injury to Lung. Int J Radiat Oncol Biol Phys 2015; 93:408-17. [PMID: 26275510 DOI: 10.1016/j.ijrobp.2015.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate (68)Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). METHODS AND MATERIALS In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). RESULTS A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r(2)=0.99, P<.01), with ventilation strongly negatively linear (r(2)=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. CONCLUSIONS Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These findings may inform future studies of functional lung avoidance using V/Q PET/CT.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Mathias Bressel
- Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Jason Callahan
- Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Mark Shaw
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Nikki Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Rodney J Hicks
- Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Daniel Steinfort
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - David L Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Michael S Hofman
- Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|