1
|
Chen AM. HPV-Mediated Radiosensitivity in Oropharyngeal Squamous Cell Carcinoma: Molecular Mechanisms and Cellular Pathways. Curr Oncol Rep 2025; 27:634-641. [PMID: 40214894 DOI: 10.1007/s11912-025-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE OF REVIEW While the oncogenic potential of HPV has been well-established in other disease sites (e.g. cervix, vulva, anus), it is increasingly evident that a significant proportion of oropharyngeal cancer cases are related to the virus. Although considerable progress has been made in the understanding of this disease with respect to its underlying biology and clinical behavior, numerous questions persist. From a therapeutic standpoint, HPV-positive oropharyngeal cancer has been shown to be more radiosensitive than HPV-negative disease. However, how HPV mediates this radiosensitivity is relatively uncertain. RECENT FINDINGS Given that it has been firmly established that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite response to radiation and can be treated with less-than-standard doses, logical questions pertain to how HPV confers this benefit to infected patients. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, multiple theories have been proposed. Indeed, it is likely that no single explanation exists for the increased radiosensitivity, and instead, HPV likely exerts its influence through a cascade of activated pathways at both the cellular level and tumor microenvironment. As will be discussed in this review, the proposed mechanisms for HPV-induced radiation response have generally centered on the disruption of such cellular pathways as DNA repair, cell cycle checkpoints, metabolic-induced stress, immunology, and cancer stem cells. Given that HPV-positive oropharyngeal cancer is increasingly recognized as a public health problem, the search to better understand its unique biological radiosensitivity has important societal and treatment-related implications.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Irvine, Chao Family Comprehensive Cancer Center, University of California, 101 The City Drive, Building 23, Orange, CA, 92868, USA.
| |
Collapse
|
2
|
Bai Y, Osmundson EC, Donahue MJ, De Vis JB. Magnetic resonance imaging to detect tumor hypoxia in brain malignant disease: A systematic review of validation studies. Clin Transl Radiat Oncol 2025; 52:100940. [PMID: 40093743 PMCID: PMC11908384 DOI: 10.1016/j.ctro.2025.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Tumor hypoxia indicates a worse prognosis in brain malignancies; however, current gold-standard methods for assessing tumor hypoxia are invasive and often inaccessible. Magnetic Resonance Imaging (MRI) is widely available, but its validity for identifying tumor hypoxia or hypoxia-related neoangiogenesis is not well characterized. A systematic literature search was performed across PubMed and Embase Databases. The search query identified MRI studies that validated hypoxia-surrogate imaging sequences against gold-standard hypoxia or neoangiogenesis detection methods in patients with brain malignancies. Literature screen identified 23 manuscripts published between 2007 and 2022. Among conventional MRI sequences, peritumoral edema and signal change after contrast administration were associated with gold-standard oxygen-assessment methods. T2*- and T2'-derived measures were associated with gold-standard methods, while reports on quantitative measures of oxygen extraction fraction were conflicting. Fiber density, tissue cellularity, blood volume, vascular transit time, and permeability measurements were associated with gold-standard methods, whereas blood flow measurements yielded conflicting results. MRI measures are promising surrogates for tumor hypoxia or hypoxia-related neoangiogenesis. Additional studies are needed to reconcile disparate findings. Future sensitivity analyses are needed to establish the MRI methods most accurate at identifying tumor hypoxia.
Collapse
Affiliation(s)
- Y Bai
- Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - E C Osmundson
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - J B De Vis
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Chen AM. De-escalation for Human Papillomavirus-Positive Oropharyngeal Cancer: A Look at the Prospective Evidence. Curr Oncol Rep 2025; 27:355-361. [PMID: 40000561 PMCID: PMC11976804 DOI: 10.1007/s11912-025-01652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW Although it is now firmly established that the presence of human papillomavirus (HPV) expression in oropharyngeal cancer is associated with a favorable prognosis, the implications with respect to treatment remain uncertain. However, the recognition that HPV-positive oropharyngeal cancer is exquisitely sensitive to radiation and chemotherapy has raised questions regarding the appropriateness of historical treatment paradigms, and clinical trials have been conducted to assess whether patients can be treated with less intensive regimens. The fundamental goal of de-escalation is to preserve the high rates of cure and survival from traditional approaches while reducing the incidence of both short- and long-term side effects. However, the data reporting on de-escalation is relatively limited. RECENT FINDINGS While the evidence to date has been promising, the heterogeneity of the published studies particularly with trial design, de-escalation approach, inclusion criteria, and treatment selection has made drawing definitive conclusions difficult. The use of differing endpoints related to disease control and quality of life have also complicated the comparison of trials across the literature. Multiple uncertainties continue to exist with respect to the current state of de-escalation for HPV-positive oropharyngeal cancer, and how to consider the growing evidence in the context of clinical decision-making in the future is the subject of this review.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, University of California, Irvine, Chao Family Comprehensive Cancer Center, 101 The City Drive, Building 23, Orange, CA, 92868, USA.
| |
Collapse
|
4
|
Hieromnimon HM, Trzcinska A, Wen FT, Howard FM, Dolezal JM, Dyer E, Kochanny S, Schulte JJ, Wang C, Chen H, Chin J, Blair E, Agrawal N, Rosenberg A, Vokes E, Katipally R, Juloori A, Izumchenko E, Lingen MW, Cipriani N, Jalaly JB, Basu D, Riesenfeld SJ, Pearson AT. Analysis of AI foundation model features decodes the histopathologic landscape of HPV-positive head and neck squamous cell carcinomas. Oral Oncol 2025; 163:107207. [PMID: 40043423 DOI: 10.1016/j.oraloncology.2025.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Human papillomavirus (HPV) influences the pathobiology of Head and Neck Squamous Cell Carcinomas (HSNCCs). While deep learning shows promise in detecting HPV from hematoxylin and eosin (H&E) stained slides, the histologic features utilized remain unclear. This study leverages artificial intelligence (AI) foundation models to characterize histopathologic features associated with HPV presence and objectively describe patterns of variability in the HPV-positive space. MATERIALS AND METHODS H&E images from 981 HNSCC patients across public and institutional datasets were analyzed. We used UNI, a foundation model based on self-supervised learning (SSL), to map the landscape of HNSCC histology and identify the axes of SSL features that best separate HPV-positive and HPV-negative tumors. To interpret the histologic features that vary across different regions of this landscape, we used HistoXGAN, a pretrained generative adversarial network (GAN), to generate synthetic histology images from SSL features, which a pathologist rigorously assessed. RESULTS Analyzing AI-generated synthetic images found distinctive features of HPV-positive histology, such as smaller, paler, more monomorphic nuclei; purpler, amphophilic cytoplasm; and indistinct cell borders with rounded tumor contours. The SSL feature axes we identified enabled accurate prediction of HPV status from histology, achieving validation sensitivity and specificity of 0.81 and 0.92, respectively. Our analysis subdivided image tiles from HPV-positive histology into three overlapping subtypes: border, inflamed, and stroma. CONCLUSION Foundation-model-derived synthetic pathology images effectively capture HPV-related histology. Our analysis identifies distinct subtypes within HPV-positive HNSCCs and enables accurate, explainable detection of HPV presence directly from histology, offering a valuable approach for low-resource clinical settings.
Collapse
Affiliation(s)
- Hanna M Hieromnimon
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anna Trzcinska
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Frank T Wen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Emma Dyer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sara Kochanny
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Cindy Wang
- Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Heather Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey Chin
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Ari Rosenberg
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Everett Vokes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Evgeny Izumchenko
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nicole Cipriani
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jalal B Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samantha J Riesenfeld
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; CZ Biohub Chicago, LLC, University of Chicago, Chicago, IL 60642, USA; NSF-Simons National Institute for Theory and Mathematics in Biology (NITMB), Chicago, IL 60637, USA.
| | - Alexander T Pearson
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; CZ Biohub Chicago, LLC, University of Chicago, Chicago, IL 60642, USA.
| |
Collapse
|
5
|
Yacoub I, Shamseddine A, Qian J, Youssef M, Safavi AH, Lee NY. De-escalated Management of HPV-positive Oropharyngeal Carcinoma: Improving Outcomes with Personalized Approaches. Semin Radiat Oncol 2025; 35:157-165. [PMID: 40090742 DOI: 10.1016/j.semradonc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
Human papilloma virus (HPV)-positive oropharyngeal cancer (OPC) is increasingly prevalent and has a favorable prognosis compared to HPV-negative OPC and other head and neck malignancies associated with smoking and alcohol. De-escalation of definitive therapy for HPV-positive OPC is an attractive strategy aiming to maintain oncologic efficacy while reducing short-term and long-term toxicities and improving quality of life. In this article, we outline approaches to de-escalation including use of alternative systemic therapies, reduction in dose of systemic therapy, and reductions in radiation dose and/or volume. We also highlight successes and cautionary outcomes from de-escalation studies and advocate for a personalized approach to future de-escalation trials in HPV-positive OPC.
Collapse
Affiliation(s)
- Irini Yacoub
- Department of Radiation Oncology, New York Proton Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Achraf Shamseddine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joshua Qian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mary Youssef
- Jacobs School of Medicine and Biomedical Sciences, New York, NY
| | - Amir H Safavi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nancy Y Lee
- Department of Radiation Oncology, New York Proton Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
6
|
Longoni M, Fankhauser CD, Negri F, Salonia A, Basile G, Johnstone PAS, Bandini M. Treatment strategies in human papillomavirus-related advanced penile cancer. Nat Rev Urol 2025:10.1038/s41585-025-00994-z. [PMID: 39966660 DOI: 10.1038/s41585-025-00994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Penile cancer is a rare neoplasm with heterogeneous prevalence influenced by risk factors such as smoking, poor hygiene and human papillomavirus (HPV) infection. Southern Africa, South America and Southeast Asia have the highest incidence of this disease. Penile squamous cell carcinomas (PSCCs) account for the majority of instances of penile cancer, with HPV-related carcinogenesis implicated in up to half of them. Increases in PSCC incidence in industrialized nations parallel the rising high-risk HPV infection rates, particularly HPV-16. Early-stage, localized PSCC is often manageable, but treatment options in advanced disease remain limited, with poor survival outcomes. Emerging evidence suggests that HPV-positive PSCC might exhibit unique therapeutic responses, including increased sensitivity to radiotherapy and chemotherapy, as has been observed in HPV-driven head and neck squamous cell carcinoma. Results of studies in HPV-positive PSCC demonstrate improved responses to chemoradiotherapy and immunotherapy, underscoring the potential for tailored treatments and de-escalation. Additionally, incorporating immunotherapy with radiotherapy in HPV-driven PSCC might provide greater oncological benefits than standard chemotherapy. These observations suggest that treatment strategies for HPV-positive PSCC might benefit from de-escalated chemoradiotherapy regimens or immunotherapy incorporation, potentially optimizing efficacy while minimizing toxic effects. Furthermore, biomarkers such as tumour mutational burden, programmed cell death ligand 1 expression, and genetic alterations could be crucial for predicting treatment response. Comprehensive biomarker assessment and accurate HPV status determination are essential for developing patient-tailored therapeutic strategies. These data provide evidence of the potential benefits of individualized approaches based on tumour biology and biomarker profiles.
Collapse
Affiliation(s)
- Mattia Longoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Christian D Fankhauser
- Department of Urology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Urology, Luzerner Kantonsspital, University of Lucerne, Lucerne, Switzerland
- University of Zurich, Faculty of Medicine and Surgery, Zurich, Switzerland
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Fausto Negri
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Giuseppe Basile
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
- Department of Urology, The Royal Free London Foundation Trust, London, UK
| | - Peter A S Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marco Bandini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy.
| |
Collapse
|
7
|
Dubec MJ, Price J, Berks M, Gaffney J, Little RA, Porta N, Sridharan N, Datta A, McHugh DJ, Hague CJ, Cheung S, Manoharan P, van Herk M, Choudhury A, Matthews JC, Parker GJ, Buckley DL, Harrington KJ, McPartlin A, O’Connor JP. Oxygen-Enhanced MRI Detects Incidence, Onset, and Heterogeneity of Radiation-Induced Hypoxia Modification in HPV-Associated Oropharyngeal Cancer. Clin Cancer Res 2024; 30:5620-5629. [PMID: 39142654 PMCID: PMC11654720 DOI: 10.1158/1078-0432.ccr-24-1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Hypoxia mediates treatment resistance in solid tumors. We evaluated if oxygen-enhanced MRI-derived hypoxic volume (HVMRI) is repeatable and can detect radiotherapy-induced hypoxia modification in human papillomavirus-associated oropharyngeal head and neck squamous cell cancer. EXPERIMENTAL DESIGN A total of 27 patients were recruited prospectively between March 2021 and January 2024. HVMRI was measured in primary and nodal tumors prior to standard-of-care (chemo)radiotherapy and then at weeks 2 and 4 (W2 and W4) into therapy. Two pretreatment scans assessed biomarker within-subject coefficient of variation and repeatability coefficient (RC). Cohort treatment response was measured using mixed-effects modeling. Responding lesions were identified by comparing HVMRI change with RC limits of agreement. RESULTS Oxygen-enhanced MRI identified hypoxia in all lesions. The HVMRI within-subject coefficient of variation was 24.6%, and RC limits of agreement were -45.7% to 84.1%. A cohort median pretreatment HVMRI of 11.3 cm3 reduced to 6.9 cm3 at W2 and 5.9 cm3 at W4 (both P < 0.001). HVMRI was reduced in 54.5% of individual lesions by W2 and in 88.2% by W4. All lesions with W2 hypoxia reduction showed persistent modification at W4. HVMRI reduced in some lesions that showed no overall volume change. Hypoxia modification was discordant between primary and nodal tumors in 50.0% of patients. CONCLUSIONS Radiation-induced hypoxia modification can occur as early as W2, but onset varies between patients and was not necessarily associated with overall size change. Half of all patients had discordant changes in primary and nodal tumors. These findings have implications for patient selection and timing of dose de-escalation strategies in human papillomavirus-associated oropharyngeal carcinoma. See related commentary by Mason, p. 5503.
Collapse
Affiliation(s)
- Michael J. Dubec
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - James Price
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael Berks
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - John Gaffney
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ross A. Little
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Nivetha Sridharan
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Anubhav Datta
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Radiology Department, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Damien J. McHugh
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Christina J. Hague
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Prakash Manoharan
- Radiology Department, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Julian C. Matthews
- Division of Psychology, Communication and Human Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Geoff J.M. Parker
- Bioxydyn Ltd, Manchester, United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David L. Buckley
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Biomedical Imaging, University of Leeds, Leeds, United Kingdom
| | - Kevin J. Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Andrew McPartlin
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Radiation Oncology, Princess Margaret Cancer Center, Toronto, Canada
| | - James P.B. O’Connor
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Radiology Department, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Morgenthaler J, Trommer M, Khor R, Wada M, Bahig H, Garden AS, Thai A, Gan H, Fokas E, Ping Ng S. Can we safely de-escalate HPV + oropharyngeal cancers? - A review of current practices and novel approaches. Oral Oncol 2024; 159:107089. [PMID: 39509801 DOI: 10.1016/j.oraloncology.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Oropharyngeal carcinomas linked to high-risk types of human papillomavirus (HPV+OPC) as a distinct tumor entity, have a better prognosis than HPV-OPC. Current treatment approaches do not differentiate between HPV-positive and negative disease, but ongoing studies are exploring de-escalation strategies, aiming to reduce therapy-related morbidity and improve patient quality of life, particularly focusing on reducing late effects from radiotherapy.We performed a literature search for both published and ongoing clinical trials and critically discussed the presented concepts and results. Those include reduction in radiotherapy dose or volume, omission or modification of concomitant chemotherapy/immunotherapy, usage of induction chemotherapy and utilization of advanced molecular and imaging biomarkers and radiomics for selected subgroups of HPV+OPC patients. While promising data have been reported from various Phase II trials, evidence from Phase III de-escalation trials has failed to demonstrate improved outcomes. Therefore, further data and an improved risk stratification are required before de-escalated radiation treatments can be recommended outside of clinical trials.The review aims to outline current de-escalation strategies and future possibilities for enhancing patient outcomes in HPV+OPC.
Collapse
Affiliation(s)
- Janis Morgenthaler
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia; Department of Radiation Oncology, Cyberknife and Radiotherapy, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Maike Trommer
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia; Department of Radiation Oncology, Cyberknife and Radiotherapy, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Richard Khor
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| | - Morikatsu Wada
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| | - Houda Bahig
- Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Alesha Thai
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia
| | - Hui Gan
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia
| | - Emmanouil Fokas
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
9
|
Chen AM. The epidemic of human papillomavirus virus-related oropharyngeal cancer: current controversies and future questions. Infect Agent Cancer 2024; 19:58. [PMID: 39609676 PMCID: PMC11606068 DOI: 10.1186/s13027-024-00616-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024] Open
Abstract
The incidence of human papillomavirus (HPV) associated oropharyngeal cancer has increased to epidemic-like proportions in the United States and other industrialized nations. While significant progress has been made in the understanding of this disease with respect to its underlying biology and clinical behavior, numerous questions persist regarding treatment. It is now firmly established that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts and thus can be targeted with de-escalated approaches using reduced doses of radiation and/or chemotherapy. The fundamental goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the incidence of both short- and long-term toxicity. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, the selection criteria and specific means for de-escalation remain uncertain, and paradigms continue to evolve. Given that HPV-positive oropharyngeal cancer is increasingly recognized as a public health problem, the search for answers to many of these provocative questions has important societal implications and is the subject of this review.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California-Irvine, School of Medicine, Irvine, CA, 92617, USA.
- Department of Radiation Oncology, University of California, Irvine, School of Medicine, Orange, CA, 92868, USA.
| |
Collapse
|
10
|
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: Who, why, what, where, when, how, how much…and what next? Radiother Oncol 2024; 200:110373. [PMID: 38857702 DOI: 10.1016/j.radonc.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The emergence of treatment de-escalation as a feasible option for patients with newly diagnosed human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma has generated considerable excitement among both providers and patients alike. Since HPV-positive oropharyngeal carcinoma has been shown to be a unique entity with distinct clinical and molecular characteristics, the rationale for customizing treatment for patients with this disease is compelling. Indeed, evidence has accumulated demonstrating that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts and thus might possibly be targeted with de-escalated approaches. The fundamental goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the intensity of treatment and thus the incidence of both short- and long-term toxicity. Given the rapidly increasing incidence of this disease, particularly among younger patients who are generally healthy, the focus on quality of life seems germane. Although the exact reason for the improved sensitivity of HPV-positive oropharyngeal carcinoma to treatment is uncertain, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, these studies have been fairly heterogeneous in design, and it remains questionable how to apply their findings to real-world practice. The potential of integrating translational approaches into clinical paradigms is also just starting to become recognized. Consequently, multiple uncertainties continue to exist with respect to de-escalation for HPV-positive oropharyngeal cancer, and these questions comprise the crux of this review.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California- Irvine, School of Medicine, Irvine, CA 92617, United States.
| |
Collapse
|
11
|
Hockemeyer K, Sakellaropoulos T, Chen X, Ivashkiv O, Sirenko M, Zhou H, Gambi G, Battistello E, Avrampou K, Sun Z, Guillamot M, Chiriboga L, Jour G, Dolgalev I, Corrigan K, Bhatt K, Osman I, Tsirigos A, Kourtis N, Aifantis I. The stress response regulator HSF1 modulates natural killer cell anti-tumour immunity. Nat Cell Biol 2024; 26:1734-1744. [PMID: 39223375 DOI: 10.1038/s41556-024-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Diverse cellular insults converge on activation of the heat shock factor 1 (HSF1), which regulates the proteotoxic stress response to maintain protein homoeostasis. HSF1 regulates numerous gene programmes beyond the proteotoxic stress response in a cell-type- and context-specific manner to promote malignancy. However, the role(s) of HSF1 in immune populations of the tumour microenvironment remain elusive. Here, we leverage an in vivo model of HSF1 activation and single-cell transcriptomic tumour profiling to show that augmented HSF1 activity in natural killer (NK) cells impairs cytotoxicity, cytokine production and subsequent anti-tumour immunity. Mechanistically, HSF1 directly binds and regulates the expression of key mediators of NK cell effector function. This work demonstrates that HSF1 regulates the immune response under the stress conditions of the tumour microenvironment. These findings have important implications for enhancing the efficacy of adoptive NK cell therapies and for designing combinatorial strategies including modulators of NK cell-mediated tumour killing.
Collapse
Affiliation(s)
- Kathryn Hockemeyer
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Olha Ivashkiv
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Sirenko
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
| | - Giovanni Gambi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Elena Battistello
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Guillamot
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - George Jour
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Igor Dolgalev
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
| | - Kate Corrigan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kamala Bhatt
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Iman Osman
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Medical Center, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nikos Kourtis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Wray R, Mauguen A, Michaud L, Leithner D, Yeh R, Riaz N, Mirtcheva R, Sherman E, Wong R, Humm J, Lee N, Schöder H. Development of 18F-Fluoromisonidazole Hypoxia PET/CT Diagnostic Interpretation Criteria and Validation of Interreader Reliability, Reproducibility, and Performance. J Nucl Med 2024; 65:1526-1532. [PMID: 39266287 PMCID: PMC11448606 DOI: 10.2967/jnumed.124.267775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Tumor hypoxia, an integral biomarker to guide radiotherapy, can be imaged with 18F-fluoromisonidazole (18F-FMISO) hypoxia PET. One major obstacle to its broader application is the lack of standardized interpretation criteria. We sought to develop and validate practical interpretation criteria and a dedicated training protocol for nuclear medicine physicians to interpret 18F-FMISO hypoxia PET. Methods: We randomly selected 123 patients with human papillomavirus-positive oropharyngeal cancer enrolled in a phase II trial who underwent 123 18F-FDG PET/CT and 134 18F-FMISO PET/CT scans. Four independent nuclear medicine physicians with no 18F-FMISO experience read the scans. Interpretation by a fifth nuclear medicine physician with over 2 decades of 18F-FMISO experience was the reference standard. Performance was evaluated after initial instruction and subsequent dedicated training. Scans were considered positive for hypoxia by visual assessment if 18F-FMISO uptake was greater than floor-of-mouth uptake. Additionally, SUVmax was determined to evaluate whether quantitative assessment using tumor-to-background ratios could be helpful to define hypoxia positivity. Results: Visual assessment produced a mean sensitivity and specificity of 77.3% and 80.9%, with fair interreader agreement (κ = 0.34), after initial instruction. After dedicated training, mean sensitivity and specificity improved to 97.6% and 86.9%, with almost perfect agreement (κ = 0.86). Quantitative assessment with an estimated best SUVmax ratio threshold of more than 1.2 to define hypoxia positivity produced a mean sensitivity and specificity of 56.8% and 95.9%, respectively, with substantial interreader agreement (κ = 0.66), after initial instruction. After dedicated training, mean sensitivity improved to 89.6% whereas mean specificity remained high at 95.3%, with near-perfect interreader agreement (κ = 0.86). Conclusion: Nuclear medicine physicians without 18F-FMISO hypoxia PET reading experience demonstrate much improved interreader agreement with dedicated training using specific interpretation criteria.
Collapse
Affiliation(s)
- Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laure Michaud
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Doris Leithner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosna Mirtcheva
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - John Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
13
|
Gui C, Wray R, Schöder H, Deasy JO, Grkovski M, Humm JL, Wong RJ, Sherman EJ, Riaz N, Lee NY. Tumor Hypoxia on 18F-fluoromisonidazole Positron Emission Tomography and Distant Metastasis From Head and Neck Squamous Cell Carcinoma. JAMA Netw Open 2024; 7:e2436407. [PMID: 39348119 PMCID: PMC11443350 DOI: 10.1001/jamanetworkopen.2024.36407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024] Open
Abstract
Importance Given high rates of locoregional control after definitive management of head and neck squamous cell carcinoma (HNSCC), better methods are needed to project distant metastasis (DM) risk. Tumor hypoxia on 18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is associated with locoregional failure, but data demonstrating an association with DM are limited. Objective To determine whether tumor hypoxia on FMISO PET is associated with DM risk after chemoradiotherapy (CRT) for HNSCC. Design, Setting, and Participants This cohort study assessed patients with HNSCC enrolled in 2 prospective clinical trials at a single academic referral center from 2004 to 2021 in which participants received FMISO PET before and during CRT. Data analysis occurred from May 2023 to May 2024. Exposures FMISO PET scans before and 1 to 2 weeks after starting CRT were evaluated for tumor hypoxia by nuclear medicine physicians. Main Outcomes and Measures The primary outcome was DM, defined as biopsy-proven HNSCC outside the primary site and regional lymph nodes. Time to DM was modeled with competing risk regression, with death as a competing risk. Overall survival (OS) was assessed secondarily and modeled with Cox regression. Results Among 281 patients (median [range] age at CRT, 58.7 [25.5-85.6] years; 251 male [89.3%]) included in this study, 242 (86.1%) had oropharyngeal primary cancer, and 266 (94.7%) had human papillomavirus-positive disease. Of all patients, 217 (77.2%) had T stage 1 or 2, and 231 patients (82.2%) had N stage 2b or less. De-escalated 30 Gy CRT was delivered to 144 patients (51.2%), and the remainder received standard 70 Gy CRT. On FMISO PET examination, 73 patients (26.0%) had hypoxia-negative disease before CRT, 138 patients (49.1%) had hypoxia-positive disease before CRT and then hypoxia-negative disease during CRT, and 70 patients (24.9%) persistently had hypoxia-positive disease before and during CRT. At a median (IQR) 58 (46-91) months of follow-up, 12 DM events and 22 deaths were observed. Persistent intratreatment hypoxia was associated with increased DM risk (hazard ratio, 3.51; 95% CI, 1.05-11.79; P = .04) and worse OS (hazard ratio, 2.66; 95% CI, 1.14-6.19; P = .02). No patients with hypoxia-negative disease before CRT experienced DM. Conclusions and Relevance In this cohort study using pooled analysis of prospective nonrandomized clinical trials incorporating FMISO PET in the definitive management of HNSCC, persistent intratreatment hypoxia was associated with increased risk of DM and worse OS. Conversely, all patients with hypoxia-negative disease before treatment remained free of DM. These findings suggest that pretreatment and intratreatment FMISO PET results may serve as biomarkers for DM risk and aid in identifying candidates for escalated therapeutic strategies.
Collapse
Affiliation(s)
- Chengcheng Gui
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L. Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J. Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
de Leeuw ALMP, Giralt J, Tao Y, Benavente S, France Nguyen TV, Hoebers FJP, Hoeben A, Terhaard CHJ, Wai Lee L, Friesland S, Steenbakkers RJHM, Tans L, Heukelom J, Kayembe MT, van Kranen SR, Bartelink H, Rasch CRN, Sonke JJ, Hamming-Vrieze O. A multicentric randomized controlled phase III trial of adaptive and 18F-FDG-PET-guided dose-redistribution in locally advanced head and neck squamous cell carcinoma (ARTFORCE). Radiother Oncol 2024; 196:110281. [PMID: 38636708 DOI: 10.1016/j.radonc.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND PURPOSE This multicenter randomized phase III trial evaluated whether locoregional control of patients with LAHNSCC could be improved by fluorodeoxyglucose-positron emission tomography (FDG-PET)-guided dose-escalation while minimizing the risk of increasing toxicity using a dose-redistribution and scheduled adaptation strategy. MATERIALS AND METHODS Patients with T3-4-N0-3-M0 LAHNSCC were randomly assigned (1:1) to either receive a dose distribution ranging from 64-84 Gy/35 fractions with adaptation at the 10thfraction (rRT) or conventional 70 Gy/35 fractions (cRT). Both arms received concurrent three-cycle 100 mg/m2cisplatin. Primary endpoints were 2-year locoregional control (LRC) and toxicity. Primary analysis was based on the intention-to-treat principle. RESULTS Due to slow accrual, the study was prematurely closed (at 84 %) after randomizing 221 eligible patients between 2012 and 2019 to receive rRT (N = 109) or cRT (N = 112). The 2-year LRC estimate difference of 81 % (95 %CI 74-89 %) vs. 74 % (66-83 %) in the rRT and cRT arm, respectively, was not found statistically significant (HR 0.75, 95 %CI 0.43-1.31,P=.31). Toxicity prevalence and incidence rates were similar between trial arms, with exception for a significant increased grade ≥ 3 pharyngolaryngeal stenoses incidence rate in the rRT arm (0 versus 4 %,P=.05). In post-hoc subgroup analyses, rRT improved LRC for patients with N0-1 disease (HR 0.21, 95 %CI 0.05-0.93) and oropharyngeal cancer (0.31, 0.10-0.95), regardless of HPV. CONCLUSION Adaptive and dose redistributed radiotherapy enabled dose-escalation with similar toxicity rates compared to conventional radiotherapy. While FDG-PET-guided dose-escalation did overall not lead to significant tumor control or survival improvements, post-hoc results showed improved locoregional control for patients with N0-1 disease or oropharyngeal cancer treated with rRT.
Collapse
Affiliation(s)
- Anna Liza M P de Leeuw
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Jordi Giralt
- Department of Radiation Oncology, Hospital General Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Yungan Tao
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Sergi Benavente
- Department of Radiation Oncology, Hospital General Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Frank J P Hoebers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Chris H J Terhaard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lip Wai Lee
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Signe Friesland
- Department of Radiation Oncology, Karolinska Institute, Stockholm, Sweden
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Tans
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jolien Heukelom
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mutamba T Kayembe
- Department of Bioinformatics and Statistics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Simon R van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Chen AM. Translational risk-adapted approaches to de-escalated radiation for human papillomavirus-positive oropharyngeal cancer: Past, present, and future. Oral Oncol 2024; 154:106850. [PMID: 38749113 DOI: 10.1016/j.oraloncology.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024]
Abstract
Interest in the use of de-escalated radiation to treat patients with newly diagnosed human papillomavirus (HPV)-positive oropharyngeal cancer has grown dramatically with the publication of prospective trials demonstrating the efficacy of such an approach. While the rationale for de-escalation--- namely to decrease treatment-related toxicity while maintaining the excellent rates of disease control historically observed in patients with this disease-is inherently obvious, uncertainty exists regarding how to best select patients for de-escalation. Consequently, risk-adapted strategies using a variety of translational and clinical platforms have been increasingly popularized to better refine treatment. These have integrated contemporary methods of mid-treatment response assessment using advanced technologies and molecular assays to customize the radiation dose. By monitoring the response as patients actively proceed through treatment, risk-adapted protocols have the potential to provide insight into the biological behavior of tumors and make individualized therapy possible. The purpose of this review is to summarize the evidence to date on risk-adapted approaches to de-escalated radiation-- highlighting the clinical, radiological, and biological data which may ultimately help usher the principles of precision medicine into practice for patients with HPV-positive oropharyngeal cancer.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California- Irvine, School of Medicine, Irvine, CA 92617, United states.
| |
Collapse
|
16
|
Mao Q, Gu M, Hong C, Wang H, Ruan X, Liu Z, Yuan B, Xu M, Dong C, Mou L, Gao X, Tang G, Chen T, Wu A, Pan Y. A Contrast-Enhanced Tri-Modal MRI Technique for High-Performance Hypoxia Imaging of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308850. [PMID: 38366271 DOI: 10.1002/smll.202308850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Personalized radiotherapy strategies enabled by the construction of hypoxia-guided biological target volumes (BTVs) can overcome hypoxia-induced radioresistance by delivering high-dose radiotherapy to targeted hypoxic areas of the tumor. However, the construction of hypoxia-guided BTVs is difficult owing to lack of precise visualization of hypoxic areas. This study synthesizes a hypoxia-responsive T1, T2, T2 mapping tri-modal MRI molecular nanoprobe (SPION@ND) and provides precise imaging of hypoxic tumor areas by utilizing the advantageous features of tri-modal magnetic resonance imaging (MRI). SPION@ND exhibits hypoxia-triggered dispersion-aggregation structural transformation. Dispersed SPION@ND can be used for routine clinical BTV construction using T1-contrast MRI. Conversely, aggregated SPION@ND can be used for tumor hypoxia imaging assessment using T2-contrast MRI. Moreover, by introducing T2 mapping, this work designs a novel method (adjustable threshold-based hypoxia assessment) for the precise assessment of tumor hypoxia confidence area and hypoxia level. Eventually this work successfully obtains hypoxia tumor target and accurates hypoxia tumor target, and achieves a one-stop hypoxia-guided BTV construction. Compared to the positron emission tomography-based hypoxia assessment, SPION@ND provides a new method that allows safe and convenient imaging of hypoxic tumor areas in clinical settings.
Collapse
Affiliation(s)
- Quanliang Mao
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Mengyin Gu
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Huiying Wang
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Xinzhong Ruan
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Zhusheng Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Mengting Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Chen Dong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Lei Mou
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Xiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Ningbo University, Ningbo, 315010, P. R. China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Yuning Pan
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| |
Collapse
|
17
|
Rühle A, Nicolay NH. [Hypoxia-based de-escalation of radiochemotherapy in patients with human papillomavirus-related oropharyngeal carcinoma]. Strahlenther Onkol 2024; 200:453-456. [PMID: 38396139 DOI: 10.1007/s00066-024-02215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Affiliation(s)
- Alexander Rühle
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Leipzig, Stephanstraße 9a, 04103, Leipzig, Deutschland.
- Arbeitsgruppe junge DEGRO der Deutschen Gesellschaft für Radioonkologie e. V. (DEGRO), Berlin, Deutschland.
- Mitteldeutsches Krebszentrum (CCCG), Partnerstandort Leipzig, Leipzig, Deutschland.
| | - Nils H Nicolay
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Leipzig, Stephanstraße 9a, 04103, Leipzig, Deutschland
- Mitteldeutsches Krebszentrum (CCCG), Partnerstandort Leipzig, Leipzig, Deutschland
| |
Collapse
|
18
|
Ammirabile A, Mastroleo F, Marvaso G, Alterio D, Franzese C, Scorsetti M, Franco P, Giannitto C, Jereczek-Fossa BA. Mapping the research landscape of HPV-positive oropharyngeal cancer: a bibliometric analysis. Crit Rev Oncol Hematol 2024; 196:104318. [PMID: 38431241 DOI: 10.1016/j.critrevonc.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE The aim of the study is to evaluate the scientific interest, the collaboration patterns and the emerging trends regarding HPV+ OPSCC diagnosis and treatment. MATERIALS AND METHODS A cross-sectional bibliometric analysis of articles reporting on HPV+ OPSCC within Scopus database was performed and all documents published up to December 31th, 2022 were eligible for analysis. Outcomes included the exploration of key characteristics (number of manuscripts published per year, growth rate, top productive countries, most highly cited papers, and the most well-represented journals), collaboration parameters (international collaboration ratio and networks, co-occurrence networks), keywords analysis (trend topics, factorial analysis). RESULTS A total of 5200 documents were found, published from March, 1987 to December, 2022. The number of publications increased annually with an average growth rate of 19.94%, reaching a peak of 680 documents published in 2021. The 10 most cited documents (range 1105-4645) were published from 2000 to 2012. The keywords factorial analysis revealed two main clusters: one on epidemiology, diagnosis, prevention and association with other HPV tumors; the other one about the therapeutic options. According to the frequency of keywords, new items are emerging in the last three years regarding the application of Artifical Intelligence (machine learning and radiomics) and the diagnostic biomarkers (circulating tumor DNA). CONCLUSIONS This bibliometric analysis highlights the importance of research efforts in prevention, diagnostics, and treatment strategies for this disease. Given the urgency of optimizing treatment and improving clinical outcomes, further clinical trials are needed to bridge unaddressed gaps in the management of HPV+ OPSCC patients.
Collapse
Affiliation(s)
- Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Federico Mastroleo
- Department of Translational Medicine (DIMET), University of Eastern Piedmont and 'Maggiore della Carità' University Hospital, Novara, Italy; Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Daniela Alterio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Radiotherapy and Radiosurgery Department, IRCSS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Radiotherapy and Radiosurgery Department, IRCSS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Pierfrancesco Franco
- Department of Translational Medicine (DIMET), University of Eastern Piedmont and 'Maggiore della Carità' University Hospital, Novara, Italy
| | - Caterina Giannitto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Sambasivan K, Barrington SF, Connor SE, Witney TH, Blower PJ, Urbano TG. Is there a role for [ 18F]-FMISO PET to guide dose adaptive radiotherapy in head and neck cancer? A review of the literature. Clin Transl Imaging 2024; 12:137-155. [PMID: 39286295 PMCID: PMC7616449 DOI: 10.1007/s40336-023-00607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 09/19/2024]
Abstract
Purpose Hypoxia is a major cause of radioresistance in head and neck cancer (HNC), resulting in treatment failure and disease recurrence. 18F-fluoromisonidazole [18F]FMISO PET has been proposed as a means of localising intratumoural hypoxia in HNC so that radiotherapy can be specifically escalated in hypoxic regions. This concept may not be deliverable in routine clinical practice, however, given that [18F]FMISO PET is costly, time consuming and difficult to access. The aim of this review was to summarise clinical studies involving [18F]FMISO PET to ascertain whether it can be used to guide radiotherapy treatment in HNC. Methods A comprehensive literature search was conducted on PubMed and Web of Science databases. Studies investigating [18F]FMISO PET in newly diagnosed HNC patients were considered eligible for review. Results We found the following important results from our literature review: 1)Studies have focussed on comparing [18F]FMISO PET to other hypoxia biomarkers, but currently there is no evidence of a strong correlation between [18F]FMISO and these biomarkers.2)The results of [18F]FMISO PET imaging are not necessarily repeatable, and the location of uptake may vary during treatment.3)Tumour recurrences do not always occur within the pretreatment hypoxic volume on [18F]FMISO PET.4)Dose modification studies using [18F]FMISO PET are in a pilot phase and so far, none have demonstrated the efficacy of radiotherapy dose painting according to [18F]FMISO uptake on PET. Conclusions Our results suggest it is unlikely [18F]FMISO PET will be suitable for radiotherapy dose adaptation in HNC in a routine clinical setting. Part of the problem is that hypoxia is a dynamic phenomenon, and thus difficult to delineate on a single scan. Currently, it is anticipated that [18F]FMISO PET will remain useful within the research setting only.
Collapse
Affiliation(s)
- Khrishanthne Sambasivan
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre; School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Steve Ej Connor
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - Timothy H Witney
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Teresa Guerrero Urbano
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; Faculty of Dentistry, Oral & Craniofacial Sciences and School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Shaikh MH, Dawson A, Prokopec SD, Barrett JW, Y F Zeng P, Khan MI, Ryan SEB, Cecchini M, Palma DA, Mymryk JS, Boutros PC, Nichols AC. Loss of LRP1B expression drives acquired chemo and radio-resistance in HPV-positive head and neck cancer. Oral Oncol 2023; 146:106580. [PMID: 37778229 DOI: 10.1016/j.oraloncology.2023.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/01/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Although human papillomavirus positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) patients typically experience excellent survival, 15-20 % of patients recur after treatment with chemotherapy and radiation. Therefore, there is a need for biomarkers of treatment failure to guide treatment intensity. MATERIALS AND METHODS Whole genome sequencing was carried out on HPV+OPSCC patients who were primarily treated with concurrent chemotherapy (cisplatin) and radiation. We then explored whether the loss of LRP1Bwas sufficient to drive an aggressive phenotype, and promote a resistance to cisplatin and radiation therapy both in vitro using HPV+ cell lines (93VU147T, UMSCC47, UWO37 and UWO23) and in vivo. RESULTS Through integrative genomic analysis of three HPV+OPSCC tumour datasets, we identified that deletion of LRP1B was enriched in samples that recurred following chemo-radiation. Knockdown using siRNA in four HPV+ cell lines (UWO23, UWO37, UMSCC47 and 93VU147T) resulted in increased proliferation of all cases. CRISPR/Cas9 deletion of LRP1B in the same cell line panel demonstrated increased proliferation, clonogenic growth and migration, as well as resistance to both cisplatin and radiation in LRP1B deleted cells compared to their respective non-targeting control cells. Cell line derived xenograft studies indicated that the LRP1B knockout tumours were more resistant to cisplatin and radiation therapy compared to their controls invivo. CONCLUSION Taken together, our work implicates LRP1B deletion as a potential biomarker for identifying treatment resistant HPV+ OPSCC cases.
Collapse
Affiliation(s)
- Mushfiq H Shaikh
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Alice Dawson
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | | | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Mohammed I Khan
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Sarah E B Ryan
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Matthew Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Anthony C Nichols
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
21
|
赵 蜀, 韩 正. [Research progress on the treatment improvement of HPV-associated oropharyngeal cancer]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2023; 37:740-747. [PMID: 37640997 PMCID: PMC10722123 DOI: 10.13201/j.issn.2096-7993.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 08/31/2023]
Abstract
The number of new cases of oropharyngeal cancer is increasing year by year among the world, and HPV infection is one of the risk factors for this malignant tumor. Compared with HPV-negative oropharyngeal cancer, HPV-positive patients are more sensitive to radiotherapy and have a better prognosis, but there is no accepted treatment for HPV-positive patients. Reducing treatment intensity moderately and exploring the best option to minimize side effects of treatment are urgent issues to be addressed. This article reviews the research progress on the treatment improvement of HPV-associated oropharyngeal cancer in recent years.
Collapse
Affiliation(s)
- 蜀琪 赵
- />首都医科大学口腔医学院口腔颌面-头颈肿瘤科(北京,100050)Department of Oral and Maxillofacial-Head and Neck Oncology, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - 正学 韩
- />首都医科大学口腔医学院口腔颌面-头颈肿瘤科(北京,100050)Department of Oral and Maxillofacial-Head and Neck Oncology, Capital Medical University School of Stomatology, Beijing, 100050, China
| |
Collapse
|
22
|
Boeke S, Winter RM, Leibfarth S, Krueger MA, Bowden G, Cotton J, Pichler BJ, Zips D, Thorwarth D. Machine learning identifies multi-parametric functional PET/MR imaging cluster to predict radiation resistance in preclinical head and neck cancer models. Eur J Nucl Med Mol Imaging 2023; 50:3084-3096. [PMID: 37148296 PMCID: PMC10382355 DOI: 10.1007/s00259-023-06254-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE Tumor hypoxia and other microenvironmental factors are key determinants of treatment resistance. Hypoxia positron emission tomography (PET) and functional magnetic resonance imaging (MRI) are established prognostic imaging modalities to identify radiation resistance in head-and-neck cancer (HNC). The aim of this preclinical study was to develop a multi-parametric imaging parameter specifically for focal radiotherapy (RT) dose escalation using HNC xenografts of different radiation sensitivities. METHODS A total of eight human HNC xenograft models were implanted into 68 immunodeficient mice. Combined PET/MRI using dynamic [18F]-fluoromisonidazole (FMISO) hypoxia PET, diffusion-weighted (DW), and dynamic contrast-enhanced MRI was carried out before and after fractionated RT (10 × 2 Gy). Imaging data were analyzed on voxel-basis using principal component (PC) analysis for dynamic data and apparent diffusion coefficients (ADCs) for DW-MRI. A data- and hypothesis-driven machine learning model was trained to identify clusters of high-risk subvolumes (HRSs) from multi-dimensional (1-5D) pre-clinical imaging data before and after RT. The stratification potential of each 1D to 5D model with respect to radiation sensitivity was evaluated using Cohen's d-score and compared to classical features such as mean/peak/maximum standardized uptake values (SUVmean/peak/max) and tumor-to-muscle-ratios (TMRpeak/max) as well as minimum/valley/maximum/mean ADC. RESULTS Complete 5D imaging data were available for 42 animals. The final preclinical model for HRS identification at baseline yielding the highest stratification potential was defined in 3D imaging space based on ADC and two FMISO PCs ([Formula: see text]). In 1D imaging space, only clusters of ADC revealed significant stratification potential ([Formula: see text]). Among all classical features, only ADCvalley showed significant correlation to radiation resistance ([Formula: see text]). After 2 weeks of RT, FMISO_c1 showed significant correlation to radiation resistance ([Formula: see text]). CONCLUSION A quantitative imaging metric was described in a preclinical study indicating that radiation-resistant subvolumes in HNC may be detected by clusters of ADC and FMISO using combined PET/MRI which are potential targets for future functional image-guided RT dose-painting approaches and require clinical validation.
Collapse
Affiliation(s)
- Simon Boeke
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - René M Winter
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sara Leibfarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Gregory Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Jonathan Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
23
|
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: evolving paradigms and future strategies. Front Oncol 2023; 13:1175578. [PMID: 37576899 PMCID: PMC10413127 DOI: 10.3389/fonc.2023.1175578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma has increased dramatically in recent years reaching epidemic-like proportions. Data has emerged not only showing that these cancers are a unique entity with distinct molecular characteristics but that they also have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts. This, it has been increasingly suggested that these tumors can be targeted with de-escalated approaches using reduced doses of radiation. The overriding goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the incidence of both short- and long-term toxicity. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, these studies have been complicated by such factors as the relatively limited sample sizes, as well as the variability in treatment, inclusion criteria, and follow-up. As the data continues to mature on de-escalation, it is unquestionable that treatment paradigms for this disease will evolve. The ongoing quest to define a standard regimen comprises the subject of this review.
Collapse
Affiliation(s)
- Allen M. Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, School of Medicine, University of California- Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Rosen BS, Vaishampayan N, Cao Y, Mierzwa ML. The Utility of Interim Positron Emission Tomography Imaging to Inform Adaptive Radiotherapy for Head and Neck Squamous Cell Carcinoma. Cancer J 2023; 29:243-247. [PMID: 37471616 DOI: 10.1097/ppo.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABSTRACT In this article, as part of this special issue on biomarkers of early response, we review the current evidence to support the use of positron emission tomography (PET) imaging during chemoradiation therapy to inform biologically adaptive radiotherapy for head and neck squamous cell carcinoma. We review literature covering this topic spanning nearly 3 decades, including the use of various radiotracers and discoveries of novel predictive PET biomarkers. Through understanding how observational trials have informed current interventional clinical trials, we hope that this review will encourage researchers and clinicians to incorporate PET response criteria in new trial designs to advance biologically optimized radiotherapy.
Collapse
Affiliation(s)
- Benjamin S Rosen
- From the Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
25
|
Abstract
Hypoxia (oxygen deprivation) occurs in most solid malignancies, albeit with considerable heterogeneity. Hypoxia is associated with an aggressive cancer phenotype by promotion of genomic instability, evasion of anti-cancer therapies including radiotherapy and enhancement of metastatic risk. Therefore, hypoxia results in poor cancer outcomes. Targeting hypoxia to improve cancer outcomes is an attractive therapeutic strategy. Hypoxia-targeted dose painting escalates radiotherapy dose to hypoxic sub-volumes, as quantified and spatially mapped using hypoxia imaging. This therapeutic approach could overcome hypoxia-induced radioresistance and improve patient outcomes without the need for hypoxia-targeted drugs. This article will review the premise and underpinning evidence for personalized hypoxia-targeted dose painting. It will present data on relevant hypoxia imaging biomarkers, highlight the challenges and potential benefit of this approach and provide recommendations for future research priorities in this field. Personalized hypoxia-based radiotherapy de-escalation strategies will also be addressed.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, Hashemite University, Zarqa, Jordan; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Delaby N, Barateau A, Chiavassa S, Biston MC, Chartier P, Graulières E, Guinement L, Huger S, Lacornerie T, Millardet-Martin C, Sottiaux A, Caron J, Gensanne D, Pointreau Y, Coutte A, Biau J, Serre AA, Castelli J, Tomsej M, Garcia R, Khamphan C, Badey A. Practical and technical key challenges in head and neck adaptive radiotherapy: The GORTEC point of view. Phys Med 2023; 109:102568. [PMID: 37015168 DOI: 10.1016/j.ejmp.2023.102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
Anatomical variations occur during head and neck (H&N) radiotherapy (RT) treatment. These variations may result in underdosage to the target volume or overdosage to the organ at risk. Replanning during the treatment course can be triggered to overcome this issue. Due to technological, methodological and clinical evolutions, tools for adaptive RT (ART) are becoming increasingly sophisticated. The aim of this paper is to give an overview of the key steps of an H&N ART workflow and tools from the point of view of a group of French-speaking medical physicists and physicians (from GORTEC). Focuses are made on image registration, segmentation, estimation of the delivered dose of the day, workflow and quality assurance for an implementation of H&N offline and online ART. Practical recommendations are given to assist physicians and medical physicists in a clinical workflow.
Collapse
|
27
|
García-Anaya MJ, Segado-Guillot S, Cabrera-Rodríguez J, Toledo-Serrano MD, Medina-Carmona JA, Gómez-Millán J. DOSE AND VOLUME DE-ESCALATION OF RADIOTHERAPY IN HEAD AND NECK CANCER. Crit Rev Oncol Hematol 2023; 186:103994. [PMID: 37061074 DOI: 10.1016/j.critrevonc.2023.103994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Radiotherapy plays a key role in the treatment of head and neck cancer. However, irradiation of the head and neck region is associated with high rates of acute and chronic toxicity. Technological advances have led to better visualisation of target volumes and critical structures and improved dose conformality in the treatment volume. Despite this, acute toxicity has not been substantially reduced and late toxicity has a significant impact on patients' quality of life. The greater radiosensitivity of tumours associated with the HPV and the development of new imaging techniques have encouraged research into new deintensified strategies to reduce the side effects of radiotherapy. The aim of this paper is to review the literature on the strategies of de-escalated treatment in dose and/or volume in head and neck cancer.
Collapse
Affiliation(s)
- M J García-Anaya
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain.
| | - S Segado-Guillot
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J Cabrera-Rodríguez
- Department of Radiation Oncology, Hospital Universitario de Badajoz. Badajoz, Spain
| | - M D Toledo-Serrano
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J A Medina-Carmona
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J Gómez-Millán
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain; Instituto de Investigación Biomédica de Malaga, Malaga, Spain
| |
Collapse
|
28
|
Gouel P, Callonnec F, Obongo-Anga FR, Bohn P, Lévêque E, Gensanne D, Hapdey S, Modzelewski R, Vera P, Thureau S. Quantitative MRI to Characterize Hypoxic Tumors in Comparison to FMISO PET/CT for Radiotherapy in Oropharynx Cancers. Cancers (Basel) 2023; 15:cancers15061918. [PMID: 36980806 PMCID: PMC10047588 DOI: 10.3390/cancers15061918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Intratumoral hypoxia is associated with a poor prognosis and poor response to treatment in head and neck cancers. Its identification would allow for increasing the radiation dose to hypoxic tumor subvolumes. 18F-FMISO PET imaging is the gold standard; however, quantitative multiparametric MRI could show the presence of intratumoral hypoxia. Thus, 16 patients were prospectively included and underwent 18F-FDG PET/CT, 18F-FMISO PET/CT, and multiparametric quantitative MRI (DCE, diffusion and relaxometry T1 and T2 techniques) in the same position before treatment. PET and MRI sub-volumes were segmented and classified as hypoxic or non-hypoxic volumes to compare quantitative MRI parameters between normoxic and hypoxic volumes. In total, 13 patients had hypoxic lesions. The Dice, Jaccard, and overlap fraction similarity indices were 0.43, 0.28, and 0.71, respectively, between the FDG PET and MRI-measured lesion volumes, showing that the FDG PET tumor volume is partially contained within the MRI tumor volume. The results showed significant differences in the parameters of SUV in FDG and FMISO PET between patients with and without measurable hypoxic lesions. The quantitative MRI parameters of ADC, T1 max mapping and T2 max mapping were different between hypoxic and normoxic subvolumes. Quantitative MRI, based on free water diffusion and T1 and T2 mapping, seems to be able to identify intra-tumoral hypoxic sub-volumes for additional radiotherapy doses.
Collapse
Affiliation(s)
- Pierrick Gouel
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
| | - Françoise Callonnec
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
| | - Franchel-Raïs Obongo-Anga
- Department of Surgery, Henri Becquerel Cancer Center and Rouen University Hospital, 76000 Rouen, France
| | - Pierre Bohn
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
| | - Emilie Lévêque
- Unit of Clinical Reasearch, Henri Becquerel Cancer Center and Rouen University Hospital, 76000 Rouen, France
| | - David Gensanne
- Department of Radiation Oncology, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108], 76000 Rouen, France
| | - Sébastien Hapdey
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
| | - Romain Modzelewski
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
| | - Pierre Vera
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
| | - Sébastien Thureau
- Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF-LITIS [EA (Equipe d'Accueil) 4108-FR CNRS 3638], Faculty of Medicine, University of Rouen, 76000 Rouen, France
- Department of Surgery, Henri Becquerel Cancer Center and Rouen University Hospital, 76000 Rouen, France
| |
Collapse
|
29
|
Carroll L, Enger SA. Simulation of a novel, non-invasive radiation detector to measure the arterial input function for dynamic positron emission tomography. Med Phys 2023; 50:1647-1659. [PMID: 36250522 DOI: 10.1002/mp.16055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dynamic positron emission tomography (dPET) is a nuclear medicine imaging technique providing functional images for organs of interest with applications in oncology, cardiology, and drug discovery. This technique requires the acquisition of the time-course arterial plasma activity concentration, called the arterial input function (AIF), which is conventionally acquired via arterial blood sampling. PURPOSE The aim of this study was to (A) optimize the geometry for a novel and cost efficient non-invasive detector called NID designed to measure the AIF for dPET scans through Monte Carlo simulations and (B) develop a clinical data analysis chain to successfully separate the arterial component of a simulated AIF signal from the venous component. METHODS The NID was optimized by using an in-house Geant4-based software package. The sensitive volume of the NID consists of a band of 10 cm long and 1 mm in diameter scintillating fibers placed over a wrist phantom. The phantom was simulated as a cylinder, 10 cm long and 6.413 cm in diameter comprised of polyethylene with two holes placed through it to simulate the patient's radial artery and vein. This phantom design was chosen to match the wrist phantom used in our previous proof of concept work. Two geometries were simulated with different arrangements of scintillating fibers. The first design used a single layer of 64 fibers. The second used two layers, an inner layer with 29 fibers and an outer layer with 30 fibers. Four positron emitting radioisotopes were simulated: 18 F, 11 C, 15 O, and 68 Ga with 100 million simulated decay events per run. The total and intrinsic efficiencies of both designs were calculated as well as the full width half maximum (FWHM) of the signal. In addition, contribution by the annihilation photons versus positrons to the signal was investigated. The results obtained from the two simulated detector models were compared. A clinical data analysis chain using an expectation maximization maximum likelihood algorithm was tested. This analysis chain will be used to separate arterial counts from the total signal. RESULTS The second NID design with two layers of scintillating fibers had a higher efficiency for all simulations with a maximum increase of 17% total efficiency for 11 C simulation. All simulations had a significant annihilation photon contribution. The signal for 18 F and 11 C was almost entirely due to photons. The clinical data analysis chain was within 1% of the true value for 434 out of 440 trials. Further experimental studies to validate these simulations will be required. CONCLUSIONS The design of the NID was optimized and its efficiency increased through Monte Carlo simulations. A clinical data analysis chain was successfully developed to separate the arterial component of an AIF signal from the venous component. The simulations show that the NID can be used to accurately measure the AIF non-invasively for dPET scans.
Collapse
Affiliation(s)
- Liam Carroll
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Circulating Human Papillomavirus DNA in Head and Neck Squamous Cell Carcinoma: Possible Applications and Future Directions. Cancers (Basel) 2022; 14:cancers14235946. [PMID: 36497430 PMCID: PMC9740011 DOI: 10.3390/cancers14235946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
There has been a rising trend in HPV-induced head and neck cancers in the last several decades. This subgroup of squamous cell carcinoma is mostly located in the oropharynx and comprises a subset of patients who are typically younger and without the usual risk factors of smoking and alcohol use. As the prognosis of HPV-induced OPC is more favorable, there is a desire to properly select these patients for de-intensification protocols while identifying individuals who may suffer treatment failure. Here, we describe recent developments in circulating tumor HPV DNA as a marker of HPV-positive oropharyngeal cancer that can potentially be used as a diagnostic tool to stratify patients for de-escalation strategies and to survey for recurrence.
Collapse
|
31
|
Zeng PYF, Cecchini MJ, Barrett JW, Shammas-Toma M, De Cecco L, Serafini MS, Cavalieri S, Licitra L, Hoebers F, Brakenhoff RH, Leemans CR, Scheckenbach K, Poli T, Wang X, Liu X, Laxague F, Prisman E, Poh C, Bose P, Dort JC, Shaikh MH, Ryan SEB, Dawson A, Khan MI, Howlett CJ, Stecho W, Plantinga P, Daniela da Silva S, Hier M, Khan H, MacNeil D, Mendez A, Yoo J, Fung K, Lang P, Winquist E, Palma DA, Ziai H, Amelio AL, Li SSC, Boutros PC, Mymryk JS, Nichols AC. Immune-based classification of HPV-associated oropharyngeal cancer with implications for biomarker-driven treatment de-intensification. EBioMedicine 2022; 86:104373. [PMID: 36442320 PMCID: PMC9706534 DOI: 10.1016/j.ebiom.2022.104373] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is significant interest in treatment de-escalation for human papillomavirus-associated (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) patients given the generally favourable prognosis. However, 15-30% of patients recur after primary treatment, reflecting a need for improved risk-stratification tools. We sought to develop a molecular test to risk stratify HPV+ OPSCC patients. METHODS We created an immune score (UWO3) associated with survival outcomes in six independent cohorts comprising 906 patients, including blinded retrospective and prospective external validations. Two aggressive radiation de-escalation cohorts were used to assess the ability of UWO3 to identify patients who recur. Multivariate Cox models were used to assess the associations between the UWO3 immune class and outcomes. FINDINGS A three-gene immune score classified patients into three immune classes (immune rich, mixed, or immune desert) and was strongly associated with disease-free survival in six datasets, including large retrospective and prospective datasets. Pooled analysis demonstrated that the immune rich group had superior disease-free survival compared to the immune desert (HR = 9.0, 95% CI: 3.2-25.5, P = 3.6 × 10-5) and mixed (HR = 6.4, 95% CI: 2.2-18.7, P = 0.006) groups after adjusting for age, sex, smoking status, and AJCC8 clinical stage. Finally, UWO3 was able to identify patients from two small treatment de-escalation cohorts who remain disease-free after aggressive de-escalation to 30 Gy radiation. INTERPRETATION With additional prospective validation, the UWO3 score could enable biomarker-driven clinical decision-making for patients with HPV+ OPSCC based on robust outcome prediction across six independent cohorts. Prospective de-escalation and intensification clinical trials are currently being planned. FUNDING CIHR, European Union, and the NIH.
Collapse
Affiliation(s)
- Peter Y F Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Shammas-Toma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Mara S Serafini
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, Maastricht, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tito Poli
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, Parma, Italy
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Francisco Laxague
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Eitan Prisman
- Division of Otolaryngology- Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Catherine Poh
- Division of Otolaryngology- Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pinaki Bose
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Joseph C Dort
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Mushfiq H Shaikh
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Sarah E B Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Alice Dawson
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Mohammed I Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - William Stecho
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Paul Plantinga
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | | | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Halema Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Danielle MacNeil
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Adrian Mendez
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - John Yoo
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Kevin Fung
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Eric Winquist
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Hedyeh Ziai
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Antonio L Amelio
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn S-C Li
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
32
|
Sannigrahi MK, Rajagopalan P, Lai L, Liu X, Sahu V, Nakagawa H, Jalaly JB, Brody RM, Morgan IM, Windle BE, Wang X, Gimotty PA, Kelly DP, White EA, Basu D. HPV E6 regulates therapy responses in oropharyngeal cancer by repressing the PGC-1α/ERRα axis. JCI Insight 2022; 7:159600. [PMID: 36134662 PMCID: PMC9675449 DOI: 10.1172/jci.insight.159600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023] Open
Abstract
Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator-activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6's interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.
Collapse
Affiliation(s)
| | | | - Ling Lai
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Varun Sahu
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M. Brody
- Department of Otorhinolaryngology — Head and Neck Surgery and
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology — Head and Neck Surgery and
| |
Collapse
|
33
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
The value of plasma hypoxia markers for predicting imaging-based hypoxia in patients with head-and-neck cancers undergoing definitive chemoradiation. Clin Transl Radiat Oncol 2022; 33:120-127. [PMID: 35243023 PMCID: PMC8881198 DOI: 10.1016/j.ctro.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Higher osteopontin plasma levels correlate with more hypoxic tumors at baseline. Increased baseline osteopontin levels are associated with residual tumor hypoxia. Absent early hypoxia response is linked with higher VEGF and CTGF levels in week 5. Plasma hypoxic markers may serve as biomarkers favoring radiotherapy personalization. Background Methods Results Conclusion
Collapse
|
35
|
Molecular prognostic indicators in HPV-positive oropharyngeal cancer: an updated review. Clin Exp Metastasis 2022; 39:407-416. [PMID: 35084607 DOI: 10.1007/s10585-022-10148-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Infection with HPV virus and exposure to extrinsic carcinogens are the main causative factors for oropharyngeal squamous cell carcinoma (OPSCC). While HPV-related OPSCC typically shows a better prognosis and may be a candidate for de-intensification therapy, there is a subset of HPV-related cancers that show aggressive phenotype with frequent metastatic spread. The identification and refinement of molecular markers can better serve for prediction of prognosis and thus improve treatment decisions and outcome. We conducted a systematic review according to the PRISMA guidelines of all relevant studies addressing novel biomarkers in publications prior to July 2021. We identified studies that evaluated the association between molecular markers and prognosis in HPV-positive OPSCC. Full-text publications were entirely reviewed, classified, and selected if a clear predictive/prognostic value was seen in patients with HPV-positive OPSCC. Furthermore, a functional analysis of the target genes was conducted to understand biological processes and molecular pathways impacting on HPV-positive OPSCC outcomes. The systematic review yielded a total of 14 studies that matched the inclusion and exclusion criteria. Differential expression was identified for 31 different biomarkers. The first common pattern identified was the association of HPV-related circulating antibodies to activated immune function. Second, gene-gene interaction analysis further identified interacting gene networks tightly implicated in hypoxia tumor metabolism including the Warburg effect. Survival in HPV-positive OPSCC can be predicted by distinct selective biomarkers mainly indicative of immune host response and oxidative metabolism. Among these markers, some were identified to be unsuitable for HPV-positive de-escalation trials aimed at improving patients' quality of life.
Collapse
|
36
|
Tawk B, Debus J, Abdollahi A. Evolution of a Paradigm Switch in Diagnosis and Treatment of HPV-Driven Head and Neck Cancer—Striking the Balance Between Toxicity and Cure. Front Pharmacol 2022; 12:753387. [PMID: 35126105 PMCID: PMC8810823 DOI: 10.3389/fphar.2021.753387] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
More than a decade after the discovery of p16 immunohistochemistry (IHC) as a surrogate for human papilloma virus (HPV)-driven head and neck squamous cell carcinoma (HNSCC), p16-IHC has become a routinely evaluated biomarker to stratify oropharyngeal squamous cell carcinoma (OPSCC) into a molecularly distinct subtype with favorable clinical prognosis. Clinical trials of treatment de-escalation frequently use combinations of biomarkers (p16-IHC, HPV-RNA in situ hybridization, and amplification of HPV-DNA by PCR) to further improve molecular stratification. Implementation of these methods into clinical routine may be limited in the case of RNA by the low RNA quality of formalin-fixed paraffin-embedded tissue blocks (FFPE) or in the case of DNA by cross contamination with HPV-DNA and false PCR amplification errors. Advanced technological developments such as investigation of tumor mutational landscape (NGS), liquid-biopsies (LBx and cell-free cfDNA), and other blood-based HPV immunity surrogates (antibodies in serum) may provide novel venues to further improve diagnostic uncertainties. Moreover, the value of HPV/p16-IHC outside the oropharynx in HNSCC patients needs to be clarified. With regards to therapy, postoperative (adjuvant) or definitive (primary) radiochemotherapy constitutes cornerstones for curative treatment of HNSCC. Side effects of chemotherapy such as bone-marrow suppression could lead to radiotherapy interruption and may compromise the therapy outcome. Therefore, reduction of chemotherapy or its replacement with targeted anticancer agents holds the promise to further optimize the toxicity profile of systemic treatment. Modern radiotherapy gradually adapts the dose. Higher doses are administered to the visible tumor bulk and positive lymph nodes, while a lower dose is prescribed to locoregional volumes empirically suspected to be invaded by tumor cells. Further attempts for radiotherapy de-escalation may improve acute toxicities, for example, the rates for dysphagia and feeding tube requirement, or ameliorate late toxicities like tissue scars (fibrosis) or dry mouth. The main objective of current de-intensification trials is therefore to reduce acute and/or late treatment-associated toxicity while preserving the favorable clinical outcomes. Deep molecular characterization of HPV-driven HNSCC and radiotherapy interactions with the tumor immune microenvironment may be instructive for the development of next-generation de-escalation strategies.
Collapse
Affiliation(s)
- Bouchra Tawk
- German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- *Correspondence: Bouchra Tawk,
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| |
Collapse
|
37
|
Rühle A, Wiedenmann N, Fennell JT, Mix M, Ruf J, Stoian R, Thomsen AR, Vaupel P, Baltas D, Grosu AL, Nicolay NH. Interleukin-6 as surrogate marker for imaging-based hypoxia dynamics in patients with head-and-neck cancers undergoing definitive chemoradiation-results from a prospective pilot trial. Eur J Nucl Med Mol Imaging 2021; 49:1650-1660. [PMID: 34773163 PMCID: PMC8940848 DOI: 10.1007/s00259-021-05602-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Purpose Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. Methods Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson’s correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. Results Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). Conclusion Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. Trial registration The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05602-x.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jamina T Fennell
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raluca Stoian
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
38
|
Zakeri K, Dunn L, Lee N. HPV-associated oropharyngeal cancer de-escalation strategies and trials: Past failures and future promise. J Surg Oncol 2021; 124:962-966. [PMID: 34595766 DOI: 10.1002/jso.26696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/09/2022]
Abstract
HPV-associated oropharynx squamous cell carcinomas are radiosensitive and chemosensitive, thus, portending a favorable prognosis. Treatment de-intensification strategies aim to reduce toxicity while maintaining efficacy. Although approaches that have substituted cisplatin with cetuximab or omitted chemotherapy have not been successful, Transoral Robotic Surgery with de-intensified adjuvant therapy has been promising. Additionally, personalized approaches are taking advantage of tumor biology and utilizing tumor reduction or hypoxia on imaging as a predictive marker to successfully de-escalate radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lara Dunn
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
39
|
Li M, Zhang Q, Yang K. Role of MRI-Based Functional Imaging in Improving the Therapeutic Index of Radiotherapy in Cancer Treatment. Front Oncol 2021; 11:645177. [PMID: 34513659 PMCID: PMC8429950 DOI: 10.3389/fonc.2021.645177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/30/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT), have largely enabled a biological dose escalation of the target volume (TV) and reduce the dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced injury increases as more radiation dose utilized during radiation therapy (RT), which predominantly limits further increases in TV dose distribution and reduces the local control rate. Thus, the accurate target delineation is crucial. Recently, technological improvements for precise target delineation have obtained more attention in the field of RT. The addition of functional imaging to RT can provide a more accurate anatomy of the tumor and normal tissues (such as location and size), along with biological information that aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application of some common MRI-based functional imaging techniques in clinical practice. In addition, we summarize the main challenges and prospects of these imaging technologies, expecting more inspiring developments and more productive research paths in the near future.
Collapse
Affiliation(s)
- Mei Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixuan Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Sud S, Weiner AA, Wang AZ, Gupta GP, Shen CJ. Prognostic and Predictive Clinical and Biological Factors in HPV Malignancies. Semin Radiat Oncol 2021; 31:309-323. [PMID: 34455986 DOI: 10.1016/j.semradonc.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human papillomavirus (HPV) causes the majority of oropharyngeal, cervical, and anal cancers, among others. These HPV-associated cancers cause substantial morbidity and mortality despite ongoing vaccination efforts. Aside from the earliest stage tumors, chemoradiation is used to treat most HPV-associated cancers across disease sites. Response rates are variable, and opportunities to improve oncologic control and reduce toxicity remain. HPV malignancies share multiple commonalities in oncogenesis and tumor biology that may inform personalized methods of screening, diagnosis, treatment and surveillance. In this review we discuss the current literature and identify promising molecular targets, prognostic and predictive clinical factors and biomarkers in HPV-associated oropharyngeal, cervical and anal cancer.
Collapse
Affiliation(s)
- Shivani Sud
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Ashley A Weiner
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Gaorav P Gupta
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC.
| |
Collapse
|
41
|
Lin P, Min M, Lai K, Lee M, Holloway L, Xuan W, Bray V, Fowler A, Lee CS, Yong J. Mid-treatment Fluorodeoxyglucose Positron Emission Tomography in Human Papillomavirus-related Oropharyngeal Squamous Cell Carcinoma Treated with Primary Radiotherapy: Nodal Metabolic Response Rate can Predict Treatment Outcomes. Clin Oncol (R Coll Radiol) 2021; 33:e586-e598. [PMID: 34373179 DOI: 10.1016/j.clon.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/05/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
AIMS To evaluate whether biomarkers derived from fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) performed prior to (prePET) and during the third week (interim PET; iPET) of radiotherapy can predict treatment outcomes in human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPC). MATERIALS AND METHODS This retrospective analysis included 46 patients with newly diagnosed OPC treated with definitive (chemo)radiation and all patients had confirmed positive HPV status (HPV+OPC) based on p16 immunohistochemistry. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV) and total lesional glycolysis (TLG) of primary, index node (node with the highest TLG) and total lymph nodes and their median percentage (≥50%) reductions in iPET were analysed, and correlated with 5-year Kaplan-Meier and multivariable analyses (smoking, T4, N2b-3 and AJCC stage IV), including local failure-free survival, regional failure-free survival, locoregional failure-free survival (LRFFS), distant metastatic failure-free survival (DMFFS), disease-free survival (DFS) and overall survival. RESULTS There was no association of outcomes with prePET parameters observed on multivariate analysis. A complete metabolic response of primary tumour was seen in 13 patients; the negative predictive value for local failure was 100%. More than a 50% reduction in total nodal MTV provided the best predictor of outcomes, including LRFFS (88% versus 47.1%, P = 0.006, hazard ratio = 0.153) and DFS (78.2% versus 41.2%, P = 0.01, hazard ratio = 0.234). More than a 50% reduction in index node TLG was inversely related to DMFFS: a better nodal response was associated with a higher incidence of distant metastatic failure (66.7% versus 100%, P = 0.009, hazard ratio = 3.0). CONCLUSION The reduction (≥50%) of volumetric nodal metabolic burden can potentially identify a subgroup of HPV+OPC patients at low risk of locoregional failure but inversely at higher risk of distant metastatic failure and may have a role in individualised adaptive radiotherapy and systemic therapy.
Collapse
Affiliation(s)
- P Lin
- Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, New South Wales, Australia; School of Medicine, Western Sydney University, New South Wales, Australia.
| | - M Min
- Department of Radiation Oncology, Sunshine Coast University Hospital, Queensland, Australia; Faculty of Science, Health, Education and Engineering, University of Sunshine Coast, Queensland, Australia; Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - K Lai
- Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, New South Wales, Australia; School of Medicine, Western Sydney University, New South Wales, Australia
| | - M Lee
- South Western Sydney Clinical School, University of New South Wales, New South Wales, Australia; Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - L Holloway
- South Western Sydney Clinical School, University of New South Wales, New South Wales, Australia; School of Medicine, Western Sydney University, New South Wales, Australia; Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia; Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - W Xuan
- South Western Sydney Clinical School, University of New South Wales, New South Wales, Australia; Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia
| | - V Bray
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - A Fowler
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - C S Lee
- South Western Sydney Clinical School, University of New South Wales, New South Wales, Australia; School of Medicine, Western Sydney University, New South Wales, Australia; Ingham Institute of Applied Medical Research, Liverpool, New South Wales, Australia; Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia; Central Clinical School, University of Sydney, New South Wales, Australia
| | - J Yong
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
42
|
Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor Radiation Response? Int J Radiat Oncol Biol Phys 2021; 110:1519-1529. [PMID: 33775857 DOI: 10.1016/j.ijrobp.2021.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To develop a noninvasive prognostic imaging biomarker related to hypoxia to predict SABR tumor control. METHODS AND MATERIALS A total of 145 subcutaneous syngeneic Dunning prostate R3327-AT1 rat tumors were focally irradiated once using cone beam computed tomography guidance on a small animal irradiator at 225 kV. Various doses in the range of 0 to 100 Gy were administered, while rats breathed air or oxygen, and tumor control was assessed up to 200 days. Oxygen-sensitive magnetic resonance imaging (MRI) (T1-weighted, ΔR1, ΔR2*) was applied to 79 of these tumors at 4.7 T to assess response to an oxygen gas breathing challenge on the day before irradiation as a probe of tumor hypoxia. RESULTS Increasing radiation dose in the range of 0 to 90 Gy enhanced tumor control of air-breathing rats with a TCD50 estimated at 59.6 ± 1.5 Gy. Control was significantly improved at some doses when rats breathed oxygen during irradiation (eg, 40 Gy; P < .05), and overall there was a modest left shift in the control curve: TCD50(oxygen) = 53.1 ± 3.1 Gy (P < .05 vs air). Oxygen-sensitive MRI showed variable response to oxygen gas breathing challenge; the magnitude of T1-weighted signal response (%ΔSI) allowed stratification of tumors in terms of local control at 40 Gy. Tumors showing %ΔSI >0.922 with O2-gas breathing challenge showed significantly better control at 40 Gy during irradiation while breathing oxygen (75% vs 0%, P < .01). In addition, increased radiation dose (50 Gy) substantially overcame resistance, with 50% control for poorly oxygenated tumors. Stratification of dose-response curves based on %ΔSI >0.922 revealed different survival curves, with TCD50 = 36.2 ± 3.2 Gy for tumors responsive to oxygen gas breathing challenge; this was significantly less than the 54.7 ± 2.4 Gy for unresponsive tumors (P < .005), irrespective of the gas inhaled during tumor irradiation. CONCLUSIONS Oxygen-sensitive MRI allowed stratification of tumors in terms of local control at 40 Gy, indicating its use as a potential predictive imaging biomarker. Increasing dose to 50 Gy overcame radiation resistance attributable to hypoxia in 50% of tumors.
Collapse
|
43
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
44
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
45
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
46
|
LoCastro E, Paudyal R, Mazaheri Y, Hatzoglou V, Oh JH, Lu Y, Konar AS, Vom Eigen K, Ho A, Ewing JR, Lee N, Deasy JO, Shukla-Dave A. Computational Modeling of Interstitial Fluid Pressure and Velocity in Head and Neck Cancer Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Feasibility Analysis. ACTA ACUST UNITED AC 2021; 6:129-138. [PMID: 32548289 PMCID: PMC7289251 DOI: 10.18383/j.tom.2020.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP) and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases. Twenty-two patients with HN cancer, with 38 lymph nodes, underwent pretreatment standard MRI, including DCE-MRI, on a 3-Tesla scanner. CFM simulation was performed with the finite element method in COMSOL Multiphysics software. The model consisted of a partial differential equation (PDE) module to generate 3D parametric IFP and IFV maps, using the Darcy equation and Ktrans values (min−1, estimated from the extended Tofts model) to reflect fluid influx into tissue from the capillary microvasculature. The Spearman correlation (ρ) was calculated between total tumor volumes and CFM estimates of mean tumor IFP and IFV. CFM-estimated tumor IFP and IFV mean ± standard deviation for the neck nodal metastases were 1.73 ± 0.39 (kPa) and 1.82 ± 0.9 × (10−7 m/s), respectively. High IFP estimates corresponds to very low IFV throughout the tumor core, but IFV rises rapidly near the tumor boundary where the drop in IFP is precipitous. A significant correlation was found between pretreatment total tumor volume and CFM estimates of mean tumor IFP (ρ = 0.50, P = 0.004). Future studies can validate these initial findings in larger patients with HN cancer cohorts using CFM of the tumor in concert with DCE characterization, which holds promise in radiation oncology and drug-therapy clinical trials.
Collapse
Affiliation(s)
| | | | - Yousef Mazaheri
- Departments of Medical Physics and.,Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Yonggang Lu
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Alan Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James R Ewing
- Departments of Neurology and.,Neurosurgery, Henry Ford Hospital, Detroit, MI; and
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Amita Shukla-Dave
- Departments of Medical Physics and.,Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
47
|
Rühle A, Nicolay NH. [Aggressive radiotherapy de-escalation for HPV-associated oropharyngeal carcinoma based on hypoxia dynamics]. Strahlenther Onkol 2021; 197:570-573. [PMID: 33765185 PMCID: PMC8154749 DOI: 10.1007/s00066-021-01765-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Alexander Rühle
- Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Deutschland.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Freiburg, Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Deutschland.
| | - Nils H Nicolay
- Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Deutschland.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Freiburg, Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Deutschland.
| |
Collapse
|
48
|
MRI Dynamic Contrast Imaging of Oral Cavity and Oropharyngeal Tumors. Top Magn Reson Imaging 2021; 30:97-104. [PMID: 33828061 DOI: 10.1097/rmr.0000000000000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT In the past decade, dynamic contrast-enhanced magnetic resonance imaging has had an increasing role in assessing the microvascular characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced magnetic resonance imaging allows noninvasive assessment of permeability and blood flow, both important parametric features of tumor hypoxia, which is in turn a marker for treatment resistance for head and neck cancer.In this article we will provide a comprehensive review technique in evaluating tumor proliferation and application of its parameters in differentiating between various tumor types of the oral cavity and how its parameters can correlate between epidermal growth factor receptor and human papillomavirus which can have an implication in patient's overall survival rates.We will also review how the parameters of this method can predict local tumor control after treatment and compare its efficacy with other imaging modalities. Lastly, we will review how its parameters can be used prospectively to identify early complications from treatment.
Collapse
|
49
|
Rühle A, Grosu AL, Nicolay NH. De-Escalation Strategies of (Chemo)Radiation for Head-and-Neck Squamous Cell Cancers-HPV and Beyond. Cancers (Basel) 2021; 13:2204. [PMID: 34064321 PMCID: PMC8124930 DOI: 10.3390/cancers13092204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022] Open
Abstract
Oncological outcomes for head-and-neck squamous cell carcinoma (HNSCC) patients are still unsatisfactory, especially for advanced tumor stages. Besides the moderate survival rates, the prevalence of severe treatment-induced normal tissue toxicities is high after multimodal cancer treatments, both causing significant morbidity and decreasing quality of life of surviving patients. Therefore, risk-adapted and individualized treatment approaches are urgently needed for HNSCC patients to optimize the therapeutic gain. It has been a well-known fact that especially HPV-positive oropharyngeal squamous cell carcinoma (OSCC) patients exhibit an excellent prognosis and may therefore be subject to overtreatment, resulting in long-term treatment-related toxicities. Regarding the superior prognosis of HPV-positive OSCC patients, treatment de-escalation strategies are currently investigated in several clinical trials, and HPV-positive OSCC may potentially serve as a model for treatment de-escalation also for other types of HNSCC. We performed a literature search for both published and ongoing clinical trials and critically discussed the presented concepts and results. Radiotherapy dose or volume reduction, omission or modification of concomitant chemotherapy, and usage of induction chemotherapy are common treatment de-escalation strategies that are pursued in clinical trials for biologically selected subgroups of HNSCC patients. While promising data have been reported from various Phase II trials, evidence from Phase III de-escalation trials is either lacking or has failed to demonstrate comparable outcomes for de-escalated treatments. Therefore, further data and a refinement of biological HNSCC stratification are required before deescalated radiation treatments can be recommended outside of clinical trials.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg—Medical Center, Robert-Koch-Str. 3, 79106 Freiburg, Germany; (A.R.); (A.-L.G.)
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg—Medical Center, Robert-Koch-Str. 3, 79106 Freiburg, Germany; (A.R.); (A.-L.G.)
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, University of Freiburg—Medical Center, Robert-Koch-Str. 3, 79106 Freiburg, Germany; (A.R.); (A.-L.G.)
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Khan R, Seltzer M. PET Imaging of Tumor Hypoxia in Head and Neck Cancer: A Primer for Neuroradiologists. Neuroimaging Clin N Am 2021; 30:325-339. [PMID: 32600634 DOI: 10.1016/j.nic.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tumor hypoxia is a known independent prognostic factor for adverse patient outcomes in those with head and neck cancer. Areas of tumor hypoxia have been found to be more radiation resistant than areas of tumor with normal oxygenation levels. Hypoxia imaging may serve to help identify the best initial treatment option and to assess intratreatment monitoring of tumor response in case treatment changes can be made. PET imaging is the gold standard method for imaging tumor hypoxia, with 18F-fluoromisonidazole the most extensively studied hypoxic imaging tracer. Newer tracers also show promise.
Collapse
Affiliation(s)
- Rihan Khan
- Department of Radiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Marc Seltzer
- Department of Radiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|